Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T16:01:19.841Z Has data issue: false hasContentIssue false

$p$-ADIC $L$-FUNCTIONS FOR ORDINARY FAMILIES ON SYMPLECTIC GROUPS

Published online by Cambridge University Press:  14 January 2019

Zheng Liu*
Affiliation:
Department of Mathematics and Statistics, McGill University, Burnside Hall Room 1248, 805 Sherbrooke Street West, Montreal, QC H3A 0B9, Canada ([email protected])

Abstract

We construct the $p$-adic standard $L$-functions for ordinary families of Hecke eigensystems of the symplectic group $\operatorname{Sp}(2n)_{/\mathbb{Q}}$ using the doubling method. We explain a clear and simple strategy of choosing the local sections for the Siegel Eisenstein series on the doubling group $\operatorname{Sp}(4n)_{/\mathbb{Q}}$, which guarantees the nonvanishing of local zeta integrals and allows us to $p$-adically interpolate the restrictions of the Siegel Eisenstein series to $\operatorname{Sp}(2n)_{/\mathbb{Q}}\times \operatorname{Sp}(2n)_{/\mathbb{Q}}$.

Type
Research Article
Copyright
© Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreatta, F., Iovita, A. and Pilloni, V., p-adic families of Siegel modular cuspforms, Ann. of Math. (2) 181(2) (2015), 623697.Google Scholar
Arthur, J., Orthogonal and symplectic groups, in The Endoscopic Classification of Representations, American Mathematical Society Colloquium Publications, Volume 61, (American Mathematical Society, Providence, RI, 2013).Google Scholar
Bijakowski, S., Pilloni, V. and Stroh, B., Classicité de formes modulaires surconvergentes, Ann. of Math. (2) 183(3) (2016), 9751014.Google Scholar
Böcherer, S. and Schmidt, C.-G., p-adic measures attached to Siegel modular forms, Ann. Inst. Fourier (Grenoble) 50(5) (2000), 13751443.Google Scholar
Casselman, W. A., Introduction to the theory of admissible representations of $p$-adic reductive groups (1995). Unpublished notes distributed by P. Sally.Google Scholar
Chenevier, G., On the infinite fern of Galois representations of unitary type, Ann. Sci. Éc. Norm. Supér. (4) 44(6) (2011), 9631019.Google Scholar
Coates, J., Motivic p-adic L-functions, in L-functions and Arithmetic (Durham, 1989), London Mathematical Society Lecture Note Series, Volume 153, pp. 141172 (Cambridge University Press, Cambridge, 1991).Google Scholar
Courtieu, M. and Panchishkin, A., Non-Archimedean L-functions and Arithmetical Siegel Modular Forms, 2nd edn, Lecture Notes in Mathematics, Volume 1471 (Springer, Berlin, 2004).Google Scholar
Eischen, E., A p-adic Eisenstein measure for vector-weight automorphic forms, Algebra Number Theory 8(10) (2014), 24332469.Google Scholar
Eischen, E., Harris, M., Li, J. and Skinner, C., $p$-adic $L$-functions for unitary groups, Part II: zeta-integral calculations, Preprint (2016), http://arxiv.org/abs/1602.01776.Google Scholar
Eischen, E. and Wan, X., p-adic Eisenstein series and L-functions of certain cusp forms on definite unitary groups, J. Inst. Math. Jussieu 15(3) (2016), 471510.Google Scholar
Eischen, E. E., A p-adic Eisenstein measure for unitary groups, J. Reine Angew. Math. 699 (2015), 111142.Google Scholar
Eischen, E. E., Differential operators, pullbacks, and families of automorphicforms on unitary groups, Ann. Math. Qué. 40(1) (2016), 5582.Google Scholar
Faltings, G. and Chai, C.-L., Degeneration of Abelian Varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Volume 22 (Springer, Berlin, 1990). With an appendix by David Mumford.Google Scholar
Garrett, P. B., Pullbacks of Eisenstein series; applications, in Automorphic Forms of Several Variables (Katata, 1983), Progress in Mathematics, Volume 46, pp. 114137 (Birkhäuser Boston, Boston, MA, 1984).Google Scholar
Garrett, P. B., On the arithmetic of Siegel–Hilbert cuspforms: Petersson inner products and Fourier coefficients, Invent. Math. 107(3) (1992), 453481.Google Scholar
Guillemonat, A., On some semispherical representations of an Hermitian symmetric pair of the tubular type. II. Construction of the unitary representations, Math. Ann. 246(2) (1979/80), 93116.Google Scholar
Harris, M., Special values of zeta functions attached to Siegel modular forms, Ann. Sci. Éc. Norm. Supér. (4) 14(1) (1981), 77120.Google Scholar
Harris, M., Arithmetic vector bundles and automorphic forms on Shimura varieties. II, Compositio Math. 60(3) (1986), 323378.Google Scholar
Harris, M., A simple proof of rationality of Siegel–Weil Eisenstein series, in Eisenstein Series and Applications, Progress in Mathematics, Volume 258, pp. 149185 (Birkhäuser Boston, Boston, MA, 2008).Google Scholar
Harris, M., Li, J.-S. and Skinner, C. M., p-adic L-functions for unitary Shimura varieties. I. Construction of the Eisenstein measure, Doc. Math. (Extra Volume Coates) (2006), 393–464.Google Scholar
Hida, H., Elementary Theory of L-functions and Eisenstein Series, London Mathematical Society Student Texts, Volume 26 (Cambridge University Press, Cambridge, 1993).Google Scholar
Hida, H., Control theorems of coherent sheaves on Shimura varieties of PEL type, J. Inst. Math. Jussieu 1(1) (2002), 176.Google Scholar
Hida, H., p-adic Automorphic forms on Shimura Varieties, Springer Monographs in Mathematics (Springer, New York, 2004).Google Scholar
Jakobsen, H. P. and Vergne, M., Restrictions and expansions of holomorphic representations, J. Funct. Anal. 34(1) (1979), 2953.Google Scholar
Kashiwara, M. and Vergne, M., On the Segal–Shale–Weil representations and harmonic polynomials, Invent. Math. 44(1) (1978), 147.Google Scholar
Katz, N., Travaux de Dwork, Lecture Notes in Mathematics, Volume 317, pp. 167200 (Springer, Berlin, 1973).Google Scholar
Kudla, S. S. and Rallis, S., Degenerate principal series and invariant distributions, Israel J. Math. 69(1) (1990), 2545.Google Scholar
Kudla, S. S. and Rallis, S., Poles of Eisenstein series and L-functions, in Festschrift in Honor of I. I. Piatetski-Shapiro on the Occasion of His Sixtieth Birthday, Part II (RamatAviv, 1989), Israel Math. Conf. Proc., Volume 3, pp. 81110 (Weizmann, Jerusalem, 1990).Google Scholar
Lan, K.-W., Toroidal compactifications of PEL-type Kuga families, Algebra Number Theory 6(5) (2012), 885966.Google Scholar
Li, J.-S., Theta lifting for unitary representations with nonzero cohomology, Duke Math. J. 61(3) (1990), 913937.Google Scholar
Liu, Z., Nearly overconvergent Siegel modular forms, Preprint, 2015, https://protect-eu.mimecast.com/s/EOiBCVvjvCx4MmWcz-6Qy?domain=math.mcgill.ca.Google Scholar
Mœglin, C., Vignéras, M.-F. and Waldspurger, J.-L., Correspondances de Howe sur un corps p-adique, Lecture Notes in Mathematics, Volume 1291 (Springer, Berlin, 1987).Google Scholar
Piatetski-Shapiro, I. and Rallis, S., L-functions for the Classical Groups, Lecture Notes in Mathematics, Volume 1254, pp. 152 (Springer, Berlin, 1987).Google Scholar
Pilloni, V., Prolongement analytique sur les variétés de Siegel, Duke Math. J. 157(1) (2011), 167222.Google Scholar
Pilloni, V., Modularité, formes de Siegel et surfaces abéliennes, J. Reine Angew. Math. 666 (2012), 3582.Google Scholar
Pilloni, V., Sur la théorie de Hida pour le groupe GSp2g, Bull. Soc. Math. France 140(3) (2012), 335400.Google Scholar
Shimura, G., Confluent hypergeometric functions on tube domains, Math. Ann. 260(3) (1982), 269302.Google Scholar
Shimura, G., On differential operators attached to certain representations of classical groups, Invent. Math. 77(3) (1984), 463488.Google Scholar
Shimura, G., Eisenstein series and zeta functions on symplectic groups, Invent. Math. 119(3) (1995), 539584.Google Scholar
Shimura, G., Euler Products and Eisenstein Series, CBMS Regional Conference Series in Mathematics, Volume 93. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1997.Google Scholar
Shimura, G., Arithmeticity in the Theory of Automorphic Forms, Mathematical Surveys and Monographs, Volume 82 (American Mathematical Society, Providence, RI, 2000).Google Scholar
Skinner, C. and Urban, E., The Iwasawa main conjectures for GL2, Invent. Math. 195(1) (2014), 1277.Google Scholar
The Stacks Project Authors. Stacks Project, http://stacks.math.columbia.edu (2015).Google Scholar
Tilouine, J., Nearly ordinary rank four Galois representations and p-adic Siegel modular forms, Compos. Math. 142(5) (2006), 11221156; with an appendix by Don Blasius.Google Scholar
Tilouine, J. and Urban, E., Several-variable p-adic families of Siegel–Hilbert cusp eigensystems and their Galois representations, Ann. Sci. Éc. Norm. Supér. (4) 32(4) (1999), 499574.Google Scholar
Urban, E., Groupes de Selmer et fonctions $L$ $p$-adiques pour les représentations modulaires adjointes, Preprint (2006).Google Scholar
Wan, X., Families of nearly ordinary Eisenstein series on unitary groups, Algebra Number Theory 9(9) (2015), 19552054; with an appendix by Kai-Wen Lan.Google Scholar