Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T07:46:19.469Z Has data issue: false hasContentIssue false

On the S-fundamental group scheme. II

Published online by Cambridge University Press:  02 April 2012

Adrian Langer
Affiliation:
Institute of Mathematics, Warsaw University, ul. Banacha 2, 02–097 Warsaw, Poland and Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00–956 Warsaw, Poland ([email protected])

Abstract

The S-fundamental group scheme is the group scheme corresponding to the Tannaka category of numerically flat vector bundles. We use determinant line bundles to prove that the S-fundamental group of a product of two complete varieties is a product of their S-fundamental groups as conjectured by Mehta and the author. We also compute the abelian part of the S-fundamental group scheme and the S-fundamental group scheme of an abelian variety or a variety with trivial étale fundamental group.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Biswas, I., Parameswaran, A. J. and Subramanian, S., Monodromy group for a strongly semistable principal bundle over a curve, Duke Math. J. 132 (2006), 148.CrossRefGoogle Scholar
2.Deligne, P. and Milne, J. S., Tannakian categories, in Hodge cycles, motives, and Shimura varieties (ed. Deligne, P., Milne, J. S., Ogus, A. and Shih, K.), Lecture Notes in Mathematics, Volume 900, pp. 101228 (Springer, 1982).CrossRefGoogle Scholar
3.dos Santos, J. P. P., Fundamental group schemes for stratified sheaves, J. Alg. 317 (2007), 691713.CrossRefGoogle Scholar
4.Esnault, H. and Mehta, V., Simply connected projective manifolds in characteristic p > 0 have no nontrivial stratified bundles, Invent. Math. 181 (2010), 449465.CrossRefGoogle Scholar
5.Esnault, H. and Mehta, V., Weak density of the fundamental group scheme, Int. Math. Res. Not. 2010 (2010), 30713081.Google Scholar
6.Faltings, G., Stable G-bundles and projective connections, J. Alg. Geom. 2 (1993), 507568.Google Scholar
7.Gieseker, D., Flat vector bundles and the fundamental group in non-zero characteristics, Annali Scuola Norm. Sup. Pisa 2 (1975), 131.Google Scholar
8.Hartshorne, R., Algebraic geometry, Graduate Texts in Mathematics, Volume 52 (Springer, 1977).CrossRefGoogle Scholar
9.Hein, G., Generalized Albanese morphisms, Compositio Math. 142 (2006), 719733.CrossRefGoogle Scholar
10.Lange, H. and Stuhler, U., Vektorbündel auf Kurven und Darstellungen der algebraischen Fundamentalgruppe, Math. Z. 156 (1977), 7383.CrossRefGoogle Scholar
11.Langer, A., Semistable sheaves in positive characteristic, Annals Math. 159 (2004), 251276 (addendum: Annals Math. 160 (2004), 1211–1213).CrossRefGoogle Scholar
12.Langer, A., On the S-fundamental group scheme, Annales Inst. Fourier, in press.Google Scholar
13.Mehta, V. B., Some remarks on the local fundamental group scheme and the big fundamental group scheme, unpublished manuscript.Google Scholar
14.Mehta, V. B. and Nori, M. V., Semistable sheaves on homogeneous spaces and abelian varieties, Proc. Indian Acad. Sci. Math. Sci. 93 (1984), 112.CrossRefGoogle Scholar
15.Mehta, V. B. and Subramanian, S., On the fundamental group scheme, Invent. Math. 148 (2002), 143150.CrossRefGoogle Scholar
16.Milne, J. S., Étale cohomology, Princeton Mathematical Series, Volume 33 (Princeton University Press, 1980).Google Scholar
17.Miyaoka, Y., The Chern classes and Kodaira dimension of a minimal variety, in Algebraic Geometry, Sendai 85, Advanced Studies in Pure Mathematics, Volume 10, pp. 449476 (American Mathematical Association, Providence, RI, 1987).Google Scholar
18.Mumford, D., Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, Volume 5 (Oxford University Press, 1970).Google Scholar
19.Nori, M. V., The fundamental group-scheme, Proc. Indian Acad. Sci. Math. Sci. 91 (1982), 73122.CrossRefGoogle Scholar
20.Nori, M. V., The fundamental group-scheme of an abelian variety, Math. Annalen 263 (1983), 263266.CrossRefGoogle Scholar
21.Seshadri, C. S., Vector bundles on curves, Contemp. Math. 153 (1993), 163200.CrossRefGoogle Scholar
22.Waterhouse, W. C., Introduction to affine group schemes, Graduate Texts in Mathematics, Volume 66 (Springer, 1979.)CrossRefGoogle Scholar