Article contents
On the
$\mu $-invariant of the cyclotomic derivative of a Katz p-adic
$L$-function
Published online by Cambridge University Press: 10 January 2014
Abstract
When the branch character has root number $- 1$, the corresponding anticyclotomic Katz
$p$-adic
$L$-function vanishes identically. For this case, we determine the
$\mu $-invariant of the cyclotomic derivative of the Katz
$p$-adic
$L$-function. The result proves, as an application, the non-vanishing
of the anticyclotomic regulator of a self-dual CM modular form with root number
$- 1$. The result also plays a crucial role in the recent work of Hsieh
on the Eisenstein ideal approach to a one-sided divisibility of the CM main
conjecture.
MSC classification
- Type
- Research Article
- Information
- Journal of the Institute of Mathematics of Jussieu , Volume 14 , Issue 1 , January 2015 , pp. 131 - 148
- Copyright
- ©Cambridge University Press 2013
References
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20170303141225678-0231:S1474748013000388:S1474748013000388_inline842.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20170303141225678-0231:S1474748013000388:S1474748013000388_inline843.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20170303141225678-0231:S1474748013000388:S1474748013000388_inline844.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20170303141225678-0231:S1474748013000388:S1474748013000388_inline845.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20170303141225678-0231:S1474748013000388:S1474748013000388_inline846.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20170303141225678-0231:S1474748013000388:S1474748013000388_inline847.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20170303141225678-0231:S1474748013000388:S1474748013000388_inline848.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20170303141225678-0231:S1474748013000388:S1474748013000388_inline849.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20170303141225678-0231:S1474748013000388:S1474748013000388_inline850.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20170303141225678-0231:S1474748013000388:S1474748013000388_inline851.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20170303141225678-0231:S1474748013000388:S1474748013000388_inline852.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20170303141225678-0231:S1474748013000388:S1474748013000388_inline853.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20170303141225678-0231:S1474748013000388:S1474748013000388_inline854.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20170303141225678-0231:S1474748013000388:S1474748013000388_inline855.gif?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20170303141225678-0231:S1474748013000388:S1474748013000388_inline856.gif?pub-status=live)
- 9
- Cited by