Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T04:47:57.737Z Has data issue: false hasContentIssue false

On descent theory and main conjectures in non-commutative Iwasawa theory

Published online by Cambridge University Press:  26 April 2010

David Burns
Affiliation:
Department of Mathematics, King's College London, Strand, London WC2R 2LS, UK ([email protected])
Otmar Venjakob
Affiliation:
Mathematisches Institut der Universität Heidelberg, 69120 Heidelberg, Germany ([email protected])

Abstract

We develop an explicit descent theory in the context of Whitehead groups of non-commutative Iwasawa algebras. We apply this theory to describe the precise connection between main conjectures of non-commutative Iwasawa theory (in the spirit of Coates, Fukaya, Kato, Sujatha and Venjakob) and the equivariant Tamagawa number conjecture. The latter result is both a converse to a theorem of Fukaya and Kato and also provides an important means of deriving explicit consequences of the main conjecture and proving special cases of the equivariant Tamagawa number conjecture.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ardakov, K. and Wadsley, S., Characteristic elements for p-torsion Iwasawa modules, J. Alg. Geom. 15 (2006), 339377.CrossRefGoogle Scholar
2.Bass, H., Algebraic K-theory (W. A. Benjamin, New York, 1968).Google Scholar
3.Breuning, M. and Burns, D., Additivity of Euler characteristics in relative algebraic K-theory, Homology Homotopy Applicat. 7(3) (2005), 1136.CrossRefGoogle Scholar
4.Breuning, M. and Burns, D., On the leading terms of Artin L-functions at s = 0 and s = 1, Compositio Math. 143 (2007), 14271464.CrossRefGoogle Scholar
5.Burns, D., On the values of equivariant zeta functions of curves over finite fields, Documenta Math. 9 (2004), 357399.CrossRefGoogle Scholar
6.Burns, D., Algebraic p-adic L-functions in non-commutative Iwasawa theory, Publ. RIMS Kyoto 45 (2009), 7587.CrossRefGoogle Scholar
7.Burns, D., Leading terms and values of equivariant motivic L-functions, Pure Appl. Math. Q. 6 (John Tate Special Issue, Part II) (2010), 83172.CrossRefGoogle Scholar
8.Burns, D., Congruences between derivatives of geometric L-functions (with an appendix by D. Burns, K. F. Lai and K.-S. Tan), submitted.Google Scholar
9.Burns, D., On main conjectures in non-commutative Iwasawa theory and related conjectures, preprint.Google Scholar
10.Burns, D. and Flach, M., Equivariant Tamagawa numbers for motives with (non-commutative) coefficients, Documenta Math. 6 (2001), 501570.CrossRefGoogle Scholar
11.Burns, D. and Greither, C., On the equivariant Tamagawa number conjecture for Tate motives, Invent. Math. 153(2) (2003), 303359.CrossRefGoogle Scholar
12.Burns, D. and Greither, C., Equivariant Weierstrass preparation and values of L-functions at negative integers, Documenta Math. Extra Volume: Kazuya Kato's Fiftieth Birthday (2003), 157185.Google Scholar
13.Burns, D. and Venjakob, O., Leading terms of zeta isomorphisms and p-adic L-functions in non-commutative Iwasawa theory, Documenta Math. Extra Volume: John H. Coates' Sixtieth Birthday (2006), 165209.Google Scholar
14.Coates, J., Schneider, P. and Sujatha, R., Links between cyclotomic and GL2 Iwasawa theory, Documenta Math. Extra Volume: Kazuya Kato's Fiftieth Birthday (2003), 187215.Google Scholar
15.Coates, J., Fukaya, T., Kato, K., Sujatha, R. and Venjakob, O., The GL2 main conjecture for elliptic curves without complex multiplication, Publ. Math. IHES 101 (2005), 163208.CrossRefGoogle Scholar
16.Curtis, C. W. and Reiner, I., Methods of representation theory, Volume I (Wiley, 1987).Google Scholar
17.Dokchister, T. and Dokchister, V., Some computations in non-commutative Iwasawa theory (with an appendix by J. Coates and R. Sujatha), Proc. Lond. Math. Soc. 94(1) (2007), 211272.Google Scholar
18.Fukaya, T. and Kato, K., A formulation of conjectures on p-adic zeta functions in non-commutative Iwasawa theory, Proc. St. Petersburg Math. Soc. 12 (2006), 185 (American Mathematical Society Translations, Series 2, Volume 219 (American Mathematical Society, Providence, RI, 2006)).Google Scholar
19.Kato, K., A generalization of class field theory by using K-groups, II, J. Fac. Sci. Univ. Tokyo 27 (1980), 603683.Google Scholar
20.Kato, K., Lectures on the approach to Iwasawa theory of Hasse–Weil L-functions via B dR, Part I, in Arithmetical algebraic geometry (ed. Ballico, E.), Lecture Notes in Mathematics, Volume 1553, pp. 50163 (Springer, 1993).Google Scholar
21.Kato, K., K 1 of some non-commutative completed group rings, K-Theory 34(2) (2005), 99140.CrossRefGoogle Scholar
22.Knudsen, F., Determinant functors on exact categories and their extensions to categories of bounded complexes, Michigan Math. J. 50 (2002), 407444.CrossRefGoogle Scholar
23.Mazur, B. and Rubin, K., Finding large Selmer groups, J. Diff. Geom. 70 (2005), 122.Google Scholar
24.Navilarekallu, T., Equivariant Birch–Swinnerton-Dyer conjecture for the base change of elliptic curves: an example, Int. Math. Res. Not. 2008 (2008), rnm164.CrossRefGoogle Scholar
25.Nekovář, J., Selmer complexes, Astérisque, Volume 310 (Société Mathématique de France, Paris, 2006).Google Scholar
26.Ritter, J. and Weiss, A., Toward equivariant Iwasawa theory, Manuscr. Math. 109 (2002), 131146.CrossRefGoogle Scholar
27.Ritter, J. and Weiss, A., Toward equivariant Iwasawa theory, II, Indagationes Math. 15 (2004), 549572.CrossRefGoogle Scholar
28.Schneider, P. and Venjakob, O., On the codimension of modules over skew power series rings with applications to Iwasawa algebras, J. Pure Appl. Alg. 204 (2006), 349367.CrossRefGoogle Scholar
29.Serre, J.-P., Sur le résidue de la fonction zêta p-adique d'un corps de nombres, C. R. Acad. Sci. Paris S'r. A 278 (1978), 183188.Google Scholar
30.Serre, J.-P., Représentations linéaires des groupes finis (Hermann, Paris, 1978).Google Scholar
31.Swan, R. G., Algebraic K-theory, Lecture Notes in Mathematics, Volume 76 (Springer, 1968).Google Scholar
32.Tate, J., Les conjectures de Stark sur les fonctions L d'Artin en s = 0 (notes par D. Bernardi et N. Schappacher), Progress in Mathematics, Volume 47 (Birkhäuser, Boston, MA, 1984).Google Scholar
33.Taylor, M. J., Classgroups of group rings, London Mathematical Society Lecture Notes, Volume 91 (Cambridge University Press, 1984).Google Scholar
34.Venjakob, O., A noncommutative Weierstrass preparation theorem and applications to Iwasawa theory, J. Reine Angew. Math. 559 (2003), 153191.Google Scholar
35.Venjakob, O., From the Birch and Swinnerton-Dyer conjecture to non-commutative Iwasawa theory via the equivariant Tamagawa number conjecture—a survey, in L-functions and Galois representations, Proceedings of the 2004 Durham Symposium, pp. 333380 (Cambridge University Press, 2007).CrossRefGoogle Scholar
36.Washington, L. C., Introduction to cyclotomic fields, Graduate Texts in Mathematics, Volume 83 (Springer, 1982).Google Scholar