No CrossRef data available.
Published online by Cambridge University Press: 27 January 2003
In this note we are studying the Lie algebras associated to non-abelian unipotent periods on $P^1_{\mathbb{Q}(\mu_n)}\setminus\{0,\mu_n,\infty\}$. Let $n$ be a prime number. We assume that for any $m\geq 1$ the numbers $Li_{m+1}(\xi_n^k)$ for $1\leq k\leq (n-1)/2$ are linearly independent over $\mathbb{Q}$ in $\mathbb{C}/(2\pi\ri)^{m+1}\mathbb{Q}$. Let $S=\{k_1,\cdots,k_q\}$ be a subset of $\{1,\dots,p-1\}$ such that if $k\in S$, then $p-k\in S$ and $(S+S)\cap S=\emptyset$ (the sum of two elements of $S$ is calculated $\mathrm{Mod}p$). Then we show that in the Lie algebra associated to non-abelian unipotent periods on $P^1_{\mathbb{Q}(\mu_n)}\setminus \{0,\mu_n,\infty\}$ there are derivations $D^{k_1}_{m+1},\dots,D^{k_q}_{m+1}$ in each degree $m+1$ and these derivations are free generators of a free Lie subalgebra of this Lie algebra.
AMS 2000 Mathematics subject classification: Primary 11G55