No CrossRef data available.
Published online by Cambridge University Press: 27 March 2015
In this article, we investigate the pointwise behaviors of functions on the Heisenberg group. We find wavelet characterizations for the global and local Hölder exponents. Then we prove some a priori upper bounds for the multifractal spectrum of all functions in a given Hölder, Sobolev, or Besov space. These upper bounds turn out to be optimal, since in all cases they are reached by typical functions in the corresponding functional spaces. We also explain how to adapt our proof to extend our results to Carnot groups.