Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T14:14:58.706Z Has data issue: false hasContentIssue false

LOSIK CLASSES FOR CODIMENSION-ONE FOLIATIONS

Published online by Cambridge University Press:  08 January 2021

Yaroslav V. Bazaikin
Affiliation:
Sobolev Institute of Mathematics Novosibirsk, Russia and University of Hradec Králové, Faculty of Science, Rokitanského 62, 500 03 Hradec Králové, Czech Republic ([email protected])
Anton S. Galaev
Affiliation:
University of Hradec Králové, Faculty of Science, Rokitanského 62, 500 03 Hradec Králové, Czech Republic ([email protected])

Abstract

Following Losik’s approach to Gelfand’s formal geometry, certain characteristic classes for codimension-one foliations coming from the Gelfand-Fuchs cohomology are considered. Sufficient conditions for nontriviality in terms of dynamical properties of generators of the holonomy groups are found. The nontriviality for the Reeb foliations is shown; this is in contrast with some classical theorems on the Godbillon-Vey class; for example, the Mizutani-Morita-Tsuboi theorem about triviality of the Godbillon-Vey class of foliations almost without holonomy is not true for the classes under consideration. It is shown that the considered classes are trivial for a large class of foliations without holonomy. The question of triviality is related to ergodic theory of dynamical systems on the circle and to the problem of smooth conjugacy of local diffeomorphisms. Certain classes are obstructions for the existence of transverse affine and projective connections.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bazaikin, Ya. V., Galaev, A. S. and Gumenyuk, P., Non-diffeomorphic Reeb foliations and modified Godbillon-Vey class. https://arxiv.org/abs/1912.01267 Google Scholar
Bernstein, I. N. and Rozenfeld, B. I., Homogeneous spaces of infinite-dimensional Lie algebras and characteristic classes of foliations, Russ. Math. Surv. 28(4) (1973), 107142.CrossRefGoogle Scholar
Candel, A. and Conlon, L., Foliations II (American Mathematical Society, Providence, RI, 2003).CrossRefGoogle Scholar
Cantwell, J. and Conlon, L., The dynamics of open, foliated manifolds and a vanishing theorem for the Godbillon-Vey class, Adv. Math. 53 (1984), 127.CrossRefGoogle Scholar
Connes, A., Noncommutative Geometry (Academic Press, San Diego, CA, 1994). Google Scholar
Crainic, M. and Moerdijk, I., Čech-De Rham theory for leaf spaces of foliations, Math. Ann. 328(1–2) (2004), 5985.CrossRefGoogle Scholar
Duminy, G., L’invariant de Godbillon-Vey d’un feuilletage se localise dans les feuilles ressort [The Godbillon-Vey invariant of a foliation is localized in the resilient leaves.] (Unpublished preprint, Université de Lille, I, 1982). Google Scholar
Duminy, G. and Sergiescu, V., Sur la nullité de l’invariant de Godbillon-Vey [On the triviality of the Godbillon-Vey invariant], C.R. Acad. Sci. Paris 292 (1981), 821824. Google Scholar
Eynard, H., A connectedness result for commuting diffeomorphisms of the interval, Ergodic Theory Dyn. Syst. 31(4) (2011), 11831191.CrossRefGoogle Scholar
Eynard, H., On the centralizer of diffeomorphisms of the half-line, Comment. Math. Helv. 86 (2011), 415435.CrossRefGoogle Scholar
Fuchs, D. B., Cohomology of Infinite-Dimensional Lie Algebras (Consultants Bureau, New York, 1986).Google Scholar
Galaev, A. S., Comparison of approaches to characteristic classes of foliations. https://arxiv.org/abs/1709.05888 Google Scholar
Godbillon, C. and Vey, J., Un invariant des feuilletages de codimension un [On an invariant of codimension-one foliations], C. R. Acad. Sci. Paris 273 (1971), 9295. Google Scholar
Hasselblatt, B. and Katok, A., eds. Handbook of Dynamical Systems, Vol. 1A (North-Holland, Amsterdam, 2002). CrossRefGoogle Scholar
Hurder, S., The Godbillon measure of amenable foliations, J. Differ. Geom. 23 (1986), 347365.CrossRefGoogle Scholar
Hurder, S., Dynamics and the Godbillon-Vey class: a history and survey, in Foliations: Geometry and Dynamics (Warsaw, 2000), pp. 2960 (World Scientific, River Edge, NJ, 2002).CrossRefGoogle Scholar
Hurder, S. and Katok, A., Secondary classes and transverse measure theory of a foliation, Bull. Amer. Math. Soc. (N.S.) 11(2) (1984), 347350.CrossRefGoogle Scholar
Hurder, S. and Langevin, R., Dynamics and the Godbillon-Vey class of C 1 foliations, J. Math. Soc. Japan 70(2) (2018), 2, 423462.CrossRefGoogle Scholar
Katznelson, Y. and Ornstein, D., The differentiability of conjugation of certain diffeomorphisms of the circle, Ergodic Theory Dyn. Syst. 5 (1989), 643680.CrossRefGoogle Scholar
Kobayashi, S., Frame bundles of higher order contact, in Proceedings of Symposia in Pure Mathematics 3, pp. 186193 (American Mathematical Society, Providence, RI, 1961).Google Scholar
Kopell, N., Commuting diffeomorphisms, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, CA, 1968), pp. 165-184 (American Mathematical Society, Providence, RI, 1970).CrossRefGoogle Scholar
Losik, M. V., On some generalization of a manifold and its characteristic classes, Funct. Anal. Appl. 24 (1990), 2632.CrossRefGoogle Scholar
Losik, M. V., Categorical differential geometry, Cahiers de topol. et geom. diff. cat. 35(4) (1994), 274290.Google Scholar
Losik, M. V., Orbit spaces and leaf spaces of foliations as generalized manifolds. https://arxiv.org/abs/1501.04993 Google Scholar
Mizutani, T., Morita, S. and Tsuboi, T., The Godbillon-Vey classes of codimension one foliations which are almost without holonomy, Ann. Math. 113 (1981), 515527.CrossRefGoogle Scholar
Morita, S., Geometry of Characteristic Classes , Translations of Mathematical Monographs 199 (American Mathematical Society, Providence, RI, 2001). Google Scholar
Morita, S. and Tsuboi, T., The Godbillon-Vey class of codimension one foliations without holonomy, Topology 19 (1980), 4349.CrossRefGoogle Scholar
Navas, A., Groups of Circle Diffeomorphisms (University of Chicago Press, Chicago, 2011).CrossRefGoogle Scholar
Novikov, S. P., Topology of foliations, Trans. Moscow Math. Soc. 14 (1965), 268304.Google Scholar
Oxtoby, J. C., Measure and Category, Graduate Texts in Mathematics. 2. 2nd ed. (Springer-Verlag, New York, 1980).Google Scholar
Sergeraert, F., Feuilletages et difféomorphismes infiniment tangents à l’identité [Foliations and diffeomorphisms infinitely tangent to the identity], Invent. Math. 39 (1977), 253275. CrossRefGoogle Scholar
Sternberg, S., On local C n contractions of the real line, Duke Math. J. 24 (1957), 97102.CrossRefGoogle Scholar
Szekeres, G., Regular iteration of real and complex functions, Acta Math. 100 (1958), 203258.CrossRefGoogle Scholar
Takens, F., Normal forms for certain singularities of vector fields, Ann. Inst. Fourier 23 (1973), 163195.CrossRefGoogle Scholar
Thurston, W., Non-cobordant foliations on S 3, Bull. Amer. Math. Soc. 78 (1972), 511514.CrossRefGoogle Scholar
Yoccoz, J.-C., Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne [Differentiable conjugation of diffeomorphisms of the circle whose rotation numbers satisfy a Diophantine condition], Annales scientifiques de l’École Normale Supérieure, Serie 4 17(3) (1984), 333359.CrossRefGoogle Scholar