Published online by Cambridge University Press: 08 November 2019
Let $F$ be a non-archimedean local field of residual characteristic $p$, $\ell \neq p$ be a prime number, and $\text{W}_{F}$ the Weil group of $F$. We classify equivalence classes of $\text{W}_{F}$-semisimple Deligne $\ell$-modular representations of $\text{W}_{F}$ in terms of irreducible $\ell$-modular representations of $\text{W}_{F}$, and extend constructions of Artin–Deligne local constants to this setting. Finally, we define a variant of the $\ell$-modular local Langlands correspondence which satisfies a preservation of local constants statement for pairs of generic representations.