Published online by Cambridge University Press: 06 August 2013
Consider a pseudogroup on $( \mathbb{C} , 0)$ generated by two local diffeomorphisms having analytic conjugacy classes a priori fixed in $\mathrm{Diff} \hspace{0.167em} ( \mathbb{C} , 0)$. We show that a generic pseudogroup as above is such that every point has a (possibly trivial) cyclic stabilizer. It also follows that these generic groups possess infinitely many hyperbolic orbits. This result possesses several applications to the topology of leaves of foliations, and we shall explicitly describe the case of nilpotent foliations associated to Arnold’s singularities of type ${A}^{2n+ 1} $.