Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-14T13:22:36.220Z Has data issue: false hasContentIssue false

A COMBINATORIAL SOLUTION TO MŒGLIN’S PARAMETRIZATION OF ARTHUR PACKETS FOR $p$-ADIC QUASISPLIT $Sp(N)$ AND $O(N)$

Published online by Cambridge University Press:  25 July 2019

Bin Xu*
Affiliation:
Yau Mathematical Sciences Center and Department of Mathematics, Tsinghua University, Beijing, China ([email protected])

Abstract

We develop a general procedure to study the combinatorial structure of Arthur packets for $p$-adic quasisplit $\mathit{Sp}(N)$ and $O(N)$ following the works of Mœglin. This will allow us to answer many delicate questions concerning the Arthur packets of these groups, for example the size of the packets.

Type
Research Article
Copyright
© The Author(s), 2019. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arthur, J., The Endoscopic Classification of Representations: Orthogonal and Symplectic Groups, Colloquium Publications, Volume 61 (American Mathematical Society, Providence, RI, 2013).Google Scholar
Harris, M. and Taylor, R., The Geometry and Cohomology of Some Simple Shimura Varieties, Annals of Mathematics Studies, Volume 151 (Princeton University Press, Princeton, NJ, 2001). With an appendix by Vladimir G. Berkovich.Google Scholar
Henniart, G., Une preuve simple des conjectures de Langlands pour GL(n) sur un corps p-adique, Invent. Math. 139(2) (2000), 439455.CrossRefGoogle Scholar
Mœglin, C., Paquets d’arthur pour les groupes classiques; point de vue combinatoire, preprint, 2006, arXiv:math/0610189.Google Scholar
Mœglin, C., Sur certains paquets d’Arthur et involution d’Aubert–Schneider–Stuhler généralisée, Represent. Theory 10 (2006), 86129.CrossRefGoogle Scholar
Mœglin, C., Conjecture d’Adams pour la correspondance de Howe et filtration de Kudla, in Arithmetic Geometry and Automorphic Forms, Advanced Lectures in Mathematics (ALM), Volume 19, pp. 445503 (Int. Press, Somerville, MA, 2011).Google Scholar
Mœglin, C., Image des opérateurs d’entrelacements normalisés et pôles des séries d’Eisenstein, Adv. Math. 228(2) (2011), 10681134.CrossRefGoogle Scholar
Mœglin, C. and Waldspurger, J.-L., Le spectre résiduel de GL(n), Ann. Sci. Éc. Norm. Supér. (4) 22(4) (1989), 605674.CrossRefGoogle Scholar
Scholze, P., The local Langlands correspondence for GLn over p-adic fields, Invent. Math. 192(3) (2013), 663715.CrossRefGoogle Scholar
Xu, B., On Mœglin’s parametrization of Arthur packets for p-adic quasisplit Sp (N) and SO(N), Canad. J. Math. 69(4) (2017), 890960.CrossRefGoogle Scholar
Xu, B., On the cuspidal support of discrete series for p-adic quasisplit Sp (N) and SO(N), Manuscripta Math. 154(3) (2017), 441502.CrossRefGoogle Scholar
Zelevinsky, A. V., Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n), Ann. Sci. Éc. Norm. Supér. (4) 13(2) (1980), 165210.CrossRefGoogle Scholar