Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-19T15:39:07.908Z Has data issue: false hasContentIssue false

Poles of L-functions and theta liftings for orthogonal groups

Published online by Cambridge University Press:  10 June 2009

David Ginzburg
Affiliation:
School of Mathematical Sciences, Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel ([email protected]; [email protected])
Dihua Jiang
Affiliation:
School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA ([email protected]
David Soudry
Affiliation:
School of Mathematical Sciences, Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel ([email protected]; [email protected])

Abstract

In this paper, we prove that the first occurrence of global theta liftings from any orthogonal group to either symplectic groups or metaplectic groups can be characterized completely in terms of the location of poles of certain Eisenstein series. This extends the work of Kudla and Rallis and the work of Moeglin to all orthogonal groups. As applications, we obtain results about basic structures of cuspidal automorphic representations and the domain of holomorphy of twisted standard L-functions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Arthur, J., A trace formula for reductive groups, I, Terms associated to classes in G(Q), Duke Math. J. 45(4) (1978), 911952.CrossRefGoogle Scholar
2.Arthur, J., A trace formula for reductive groups, II, Applications of a truncation operator, Compositio Math. 40(1) (1980), 87121.Google Scholar
3.Arthur, J., An introduction to the trace formula, in Harmonic analysis, the trace formula, and Shimura varieties, Clay Mathematical Proceedings, Volume 4, pp. 1263 (American Mathematical Society, Providence, RI, 2005).Google Scholar
4.Cogdell, J. W., Kim, H. H., Piatetski-Shapiro, I. I. and Shahidi, F., On lifting from classical groups to GLN, Publ. Math. IHES 93 (2001), 530.CrossRefGoogle Scholar
5.Gelbart, S., Piatetski-Shapiro, I. and Rallis, S., Explicit constructions of automorphic L-functions, Lecture Notes in Mathematics, Volume 1254 (Springer, 1987).CrossRefGoogle Scholar
6.Ginzburg, D., Rallis, S. and Soudry, D., Periods, poles of L-functions and symplecticorthogonal theta lifts, J. Reine Angew. Math. 487 (1997), 85114.Google Scholar
7.Ginzburg, D., Jiang, D. and Rallis, S., Non-vanishing of the central value of the Rankin–Selberg L-functions, I, J. Am. Math. Soc. 17(3) (2004), 679722.CrossRefGoogle Scholar
8.Ginzburg, D., Jiang, D. and Soudry, D., Poles of L-functions and theta liftings for orthogonal groups, II, in Shahidi's 60th Birthday Conference Volume, in press.Google Scholar
9.Howe, R., θ-series and invariant theory, in Automorphic forms, representations and L-functions, Oregon State University, Corvallis, OR, 1977, Part 1, pp. 275285, Proceedings of Symposia in Pure Mathematics, Volume 33 (American Mathematical Society, Providence, RI, 1979).Google Scholar
10.Howe, R. and Piatetski-Shapiro, I., Some examples of automorphic forms on Sp4, Duke Math. J. 50(1) (1983), 55106.CrossRefGoogle Scholar
11.Jacquet, H. and Rallis, S., Symplectic periods, J. Reine Angew. Math. 423 (1992), 175197.Google Scholar
12.Jiang, D., G 2-periods and residual representations, J. Reine Angew. Math. 497 (1998), 1746.CrossRefGoogle Scholar
13.Jiang, D. and Soudry, D., The local converse theorem for SO(2n + 1) and applications, Annals Math. (2) 157(3) (2003), 743806.CrossRefGoogle Scholar
14.Jiang, D. and Soudry, D., On the genericity of cuspidal automorphic forms of SO2n+1, J. Reine Angew. Math. 604 (2007), 187209.Google Scholar
15.Jiang, D. and Soudry, D., On the genericity of cuspidal automorphic forms of SO2n+1, II, Compositio Math. 143(3) (2007), 721748.CrossRefGoogle Scholar
16.Kudla, S. S., Splitting metaplectic covers of dual reductive pairs, Israel J. Math. 87 (1994), 361401.CrossRefGoogle Scholar
17.Kudla, S. S. and Rallis, S., Poles of Eisenstein series and L-functions, in Festschrift in Honor of I. I. Piatetski-Shapiro on the Occasion of His Sixtieth Birthday, Part II, Ramat Aviv, 1989, Israel Mathematical Conference Proceedings, Volume 3, pp. 81110 (Weizmann, Jerusalem, 1990).Google Scholar
18.Kudla, S. S. and Rallis, S., A regularized Siegel–Weil formula: the first term identity, Annals Math. (2) 140(1) (1994), 180.CrossRefGoogle Scholar
19.Li, J.-S., Nonexistence of singular cusp forms, Compositio Math. 83(1) (1992), 4351.Google Scholar
20.Moeglin, C., Non nullité de certains relêvements par séries théta, J. Lie Theory 7 (1997), 201229.Google Scholar
21.Moeglin, C., Quelques propriétés de base des séries théta, J. Lie Theory 7 (1997), 231238.Google Scholar
22.Moeglin, C. and Waldspurger, J.-L., Spectral decomposition and Eisenstein series, Cambridge Tracts in Mathematics, Volume 113 (Cambridge University Press, 1995).CrossRefGoogle Scholar
23.Moeglin, C., Vignéras, M.-F. and Waldspurger, J.-L., Correspondances de Howe sur un corps p-adique (‘Howe correspondences over a p-adic field’), Lecture Notes in Mathematics, Volume 1291 (Springer, 1987; in French)CrossRefGoogle Scholar
24.Rallis, S., On the Howe duality conjecture, Compositio Math. 51(3) (1984), 333399.Google Scholar
25.Rallis, S., Poles of standard L functions, in Proc. Int. Congress of Mathematicians, Kyoto, 1990, Volumes I and II, pp. 833845 (Mathematical Society of Japan, Tokyo, 1991).Google Scholar
26.Shahidi, F., On the Ramanujan conjecture and the finiteness of poles of certain L-functions, Annals Math. (2) 127 (1988), 547584.CrossRefGoogle Scholar
27.Waldspurger, J.-L., Démonstration d'une conjecture de dualité de Howe dans le cas p-adique, p ≠ 2 (‘Proof of a duality conjecture of Howe in the p-adic case, p ≠ 2’), in Festschrift in Honor of I. I. Piatetski-Shapiro on the Occasion of His Sixtieth Birthday, Part II, Ramat Aviv, 1989, Israel Mathematical Conference Proceedings, Volume 2, pp. 267324 (Weizmann, Jerusalem, 1990; in French).Google Scholar