Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T10:23:59.809Z Has data issue: false hasContentIssue false

ON THE TEMPERED FUNDAMENTAL GROUPS OF HYPERBOLIC CURVES OF GENUS $0$ OVER $\overline {\mathbb {Q}}_p$

Part of: Curves

Published online by Cambridge University Press:  01 June 2022

Shota Tsujimura*
Affiliation:
Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan

Abstract

Let p be a prime number. In the present paper, we prove that the moduli of hyperbolic curves of genus $0$ over an algebraic closure of the field of p-adic numbers may be completely determined by their tempered fundamental groups.

MSC classification

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

André, Y., Period mappings and differential equations: From $\mathbb{C}$ to $\mathbb{C}\mathrm{p}$ , in MSJ Memoirs 12, Math. Soc. of Japan, Tokyo (2003).Google Scholar
André, Y., On a geometric description of Gal( ${\overline{\mathbb{Q}}}_p / {\mathbb{Q}}_p$ ) and a $p$ -adic avatar of $\widehat{\mathrm{GT}}$ , Duke Math. J. 119 (2003), 139.10.1215/S0012-7094-03-11911-0CrossRefGoogle Scholar
Belyi, G. V., On Galois extensions of a maximal cyclotomic field, Izv. Akad. Nauk SSSR Ser. Mat. 43 ( 2) (1979), 269–276; English transl. in Math. USSR Izv. 14 (1980), 247256.Google Scholar
Lepage, E., Tempered fundamental group and metric graph of a Mumford curve, Publ. Res. Inst. Math. Sci. 46 (2010), 849897.Google Scholar
Lepage, E., Resolution of non-singularities for Mumford curves, Publ. Res. Inst. Math. Sci. 49 (2013), 861891.10.4171/PRIMS/122CrossRefGoogle Scholar
Lütkebohmert, W., Rigid geometry of curves and their Jacobians , in Ergebnisse der Mathematik und ihrer Grenzgebiete 61, Springer (2016).10.1007/978-3-319-27371-6CrossRefGoogle Scholar
Mochizuki, S., The local pro- $p$ anabelian geometry of curves, Invent. Math. 138 (1999), 319423.10.1007/s002220050381CrossRefGoogle Scholar
Mochizuki, S., Noncritical Belyi maps, Math. J. Okayama Univ. 46 (2004), 105113.Google Scholar
Mochizuki, S., Semi-graphs of anabelioids, Publ. Res. Inst. Math. Sci. 42 (2006), 221322.10.2977/prims/1166642064CrossRefGoogle Scholar
Neukirch, J., Algebraic number theory, Grundlehren der Mathematischen Wissenschaften 322, Springer-Verlag (1999).10.1007/978-3-662-03983-0CrossRefGoogle Scholar
Sarashina, A., Reconstruction of one-punctured elliptic curves in positive characteristic by their geometric fundamental groups, Manuscripta Math. 163 (2020), 201225.10.1007/s00229-019-01152-7CrossRefGoogle Scholar
Tamagawa, A., The Grothendieck conjecture for affine curves, Compos. Math. 109 (1997), 135194.10.1023/A:1000114400142CrossRefGoogle Scholar
Tamagawa, A., On the fundamental groups of curves over algebraically closed fields of characteristic $>0$ , Int. Math. Res. Not. (1999), 853873.10.1155/S1073792899000446CrossRefGoogle Scholar
Tamagawa, A., On the tame fundamental groups of curves over algebraically closed fields of characteristic $>0$ , in Galois groups and fundamental groups, Math. Sci. Res. Inst. Publ. 41 (Schneps, L., ed.), Cambridge University Press (2003), 47105.Google Scholar
Tamagawa, A., Resolution of nonsingularities of families of curves, Publ. Res. Inst. Math. Sci. 40 (2004), 12911336.10.2977/prims/1145475448CrossRefGoogle Scholar
Tamagawa, A., Finiteness of isomorphism classes of curves in positive characteristic with prescribed fundamental groups, J. Algebraic Geom. 13 (2004), 675724.10.1090/S1056-3911-04-00376-5CrossRefGoogle Scholar
Tsujimura, S., Combinatorial Belyi cuspidalization and arithmetic subquotients of the Grothendieck-Teichmüller group, Publ. Res. Inst. Math. Sci. 56 (2020), 779829.10.4171/PRIMS/56-4-5CrossRefGoogle Scholar
Yang, Y., On the admissible fundamental groups of curves over algebraically closed fields of characteristic $p>0$ , Publ. Res. Inst. Math. Sci. 54 (2018), 649678.10.4171/PRIMS/54-3-4CrossRefGoogle Scholar