Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T16:18:50.516Z Has data issue: false hasContentIssue false

Tests of a mortality table graduation

Published online by Cambridge University Press:  18 August 2016

H. L Seal
Affiliation:
Statistician to the Director of Air Matériel, Admiralty

Extract

Sangue di Bacco! ... les dés sont pipés!

A Former President of the Institute once remarked that whereas the graduation of a mortality table might be considered a specialized technique not required by the practising actuary, the efficient testing of any graduation submitted to him should be an integral part of his actuarial ability. The student anxious to equip himself in this respect encounters considerable divergence of opinion regarding the best method of testing a graduation. There is complete agreement as to the duality of purpose of such a test: smoothness and fidelity to the data are essential factors. But whilst the criterion of smoothness is easily formulated—the run of the second or third differences of qx must show no awkward breaks—the views relating to the tests of adherence to the data are divided between the application of a “mean deviation” rule at each age or group of ages and a purely “practical” judgment based on that elusive virtue, experience.

Type
Research Article
Copyright
Copyright © Institute and Faculty of Actuaries 1943

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bertrand, J. (1889). Calcul des Probabilités. Paris: Gauthier-Villars.Google Scholar
Blaschke, E. (1906). Vorlesungen über mathematische Statistik. Berlin: Teubner.Google Scholar
Bohlmann, G. (19001904). Lebensversicherungs-Mathematik, Band I, Teil II, D4b, of Enzyklopädie der mathematischen Wissenschaften. Leipzig: Teubner.Google Scholar
Castelnuovo, G. (1933). Calcolo delle Probabilità, Vol. 1. Bologna: Zanichelli.Google Scholar
Cramèr, H. (1927). Sannolikhetskalylen. Stockholm: Gjallarhornets Förlag.Google Scholar
Cramèr, H. and Wold, H. (1935). “Mortality variations in Sweden.” Skand. Aktuar. Tidskrift, p. 162.CrossRefGoogle Scholar
Elderton, W. P. (1938). Frequency Curves and Correlation. Cambridge Univ. Press.Google Scholar
Esscher, F. (1920). “Über die Sterblichkeit in Schweden 1886–1914.” Meddel. från Lunds astronomiska Observatorium, Ser. ii, nr. 23, Lund.Google Scholar
Fisher, R. A. (1922). “On the interpretation of X 2 from contingency tables and the calculation of P” J. Roy. Statist. Soc. Vol. lxxxv, p. 87.CrossRefGoogle Scholar
Fisher, R. A. and Yates, F. (1938). Statistical Tables for Biological, Agricultural and Medical Research. London: Oliver and Boyd.Google Scholar
Geary, R. C. and Pearson, E. S. (1938). Tests of Normality. London: Biometrika Office.Google Scholar
Haldane, J. B. S. (1937). “The exact value of the moments of the distribution of X 2 etc.” Biometrika, Vol. xxix, p. 133.Google Scholar
Hardy, G. F. (1909). The Theory of the Construction of Tables of Mortality. London: C. and E. Layton.Google Scholar
Jones, D. Caradog (1924). A First Course in Statistics. London: Bell.Google Scholar
Lange, A. (1932). “Untersuchungen über die jährlichen Schwankungen der Schadensquotienten in der Lebensversicherung und in der Feuerversicherung.” Wirtschaft und Recht der Versicherung, Nr. 2.Google Scholar
Mises, R. Von (1939). Probability, Statistics and Truth. London: Hodge.Google Scholar
Neyman, J. and Pearson, E. S. (1933). “On the problem of the most efficient tests of statistical hypotheses.” Philos. Trans. A, Vol. ccxxxi, p. 289.Google Scholar
Pearson, E. S. (1938). “The probability integral transformation for testing goodness of fit and combining independent tests of significance.” Biometrika, Vol. xxx, p. 134.CrossRefGoogle Scholar
Pearson, K. (1900). “On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling.” Phil. Mag. Vol. l, p. 157.CrossRefGoogle Scholar
Pearson, K. edited by (1914). Tables for Statisticians and Biometricians, Part I. London: Biometrika Office.Google Scholar
Peek, J. H. (1899). “Das Problem vom Risiko in der Lebensversicherung.” Zeitschrift für Versicherungsrecht und Wissenschaft, Bd. v, p. 169.Google Scholar
Riebesell, P. (1933). “Was folgt aus dem Misesschen Wahrscheinlichkeitsbegriff für die Versicherungsmathematik?” Blätter für Versicherungs-Mathematik, Bd. II, p. 395.Google Scholar
Rietz, H. L. (1927). Mathematical Statistics. Chicago, IIl.: Open Court.CrossRefGoogle Scholar
Steffensen, J. F. (1912). “On the fitting of Makeham's curve to mortality observations.” Proc. Int. Cong. Math. Cambridge.Google Scholar
Stevens, W. L. (1939). “Distribution of groups in a sequence of alternatives.” Ann. Eugen., Lond., Vol. ix, p. 10.CrossRefGoogle Scholar
Tippett, L. H. C. (1927). Random Sampling Numbers. Tracts for Computers, No. XV. Camb. Univ. Press.Google Scholar