Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-01T15:18:48.556Z Has data issue: false hasContentIssue false

The School of Mathematical Formalism and the Viennese Circle of Mathematical Economists

Published online by Cambridge University Press:  11 June 2009

Extract

The term revolution is normally used to indicate a sharp change in the direction of evolution of a given phenomenon, a catastrophe, in the jargon of modern dynamic theory. In this sense we often talk of the Newtonian revolution in physics or of a Neoclassical revolution in economics.

Type
Articles
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baumol, W. J. and Goldfeld, S. M. eds. 1968.Precursors in Mathematical Economics: An Anthology, London School of Economics Series of Reprints of Scarce Works on Political Economy, London.Google Scholar
Bourbaki, Nicholas. 1950. “The Architecture of Mathematics,American Mathematical Monthly, 57, 221232.Google Scholar
Cassel, Gustav.1932. The Theory of Social Economy, 2d English edition, originally published in 1918, Harcourt Brace, New York.Google Scholar
Craver, Earlene. 1986. “The Emigration of the Austrian Economists,History of Political Economy, 18, no. 1, 132.CrossRefGoogle Scholar
Debreu, Gerard. 1959. Theory of Value, John Wiley and Sons, New York.Google Scholar
Debreu, Gerard. 1984. “Economic Theory in the Mathematical Mode,American Economic Review, 74, June, 267–78.Google Scholar
DorfmanRobert, P. A. Robert, P. A.Samuelson, , and Robert, Solow, 1958. Linear Programming and Economic Analysis, McGraw Hill, New York.Google Scholar
Goodwin, R. M. 1951.“Iteration, Automatic Computers, and Economic Dynamics,” Metroeconomica, 3, no. 1, 17;Google Scholar
reprinted in Goodwin, R. M., 1982, Essays in Economic Dynamics, Macmillan, London.CrossRefGoogle Scholar
Ingrao, Bruna, and Israel, Giorgio. 1990. The Invisible Hand, MIT Press, Cambridge, Mass.Google Scholar
Jammer, Michael. 1974. The Philosophy of Quantum Mechanics: The Interpretations of Quantum Mechanics in Historical Perspective, Wiley Inter-Science, New York.Google Scholar
Kline, Morris. 1980. Mathematics: the Loss of Certainty, Oxford University Press, New York.Google Scholar
Lakatos, Imre. 1976. Proofs and Refutations, Cambridge University Press, Cambridge (U.K.).CrossRefGoogle Scholar
Lakatos, Imre. 1978. “What does a Mathematical Proof Prove?” in Lakatos, I.Mathematics, Science and Epistemology. Philosophical Papers, Cambridge University Press, Cambridge (U.K.).Google Scholar
Menger, Karl. 1936. “Bemerkungen zu den Ertragsgesetzen,” Zeitschrift für Nationalökonomie, 7. English translation in Menger 1979.Google Scholar
Menger, Karl. 1973. “Austrian Marginalism and Mathematical Economics,” in J.R., Hicks, and William, Weber eds., Carl Menger and the Austrian School of Economics, Clarendon Press, Oxford.Google Scholar
Menger, Karl. 1979. Selected Papers in Logic and Foundations, Didactics, Economics, The Vienna Circle Collection, R. Reidel Publishing Co., Dordrecht.CrossRefGoogle Scholar
Mirowski, Philip. 1987. “Mathematical Formalism and Economic Explanation,” in Mirowski, P., ed., The Reconstruction of Economic Theory, Kluwer-Nijoff Publishing, Boston.Google Scholar
Neumann, John von. 1928. “Zur Theorie der Gesellschaftspiele,” Mathematische Annalen, 100.CrossRefGoogle Scholar
Neumann, John von. 1932. Mathematische Grundiagen der Quantenmechanik, Springer Verlag, Berlin.Google Scholar
Neumann, John von. 1937. “Uber eln Ökonomisches Gleichungssystem und eine Verallgemeinerung des Brouwerschen Fixpunksatzes,” in Karl, Menger, ed., Ergebnisse eines Mathematischen Kolloquiums, 1935, F. Deuticke, Leipzig and Vienna.Google Scholar
Neumann, John von. and Oskar, Morgenstern, 1944. Theory of Games and Economic Behavior, Princeton University Press, Princeton.Google Scholar
Punzo, Lionello F. 1984. Formalism and Empiricism in Economics: Origins, Theory, Methods, Istituto di Economia, Siena.Google Scholar
Punzo, Lionello F. 1989. “Von Neumann and Karl Menger's Mathematical Colloquium,” in DoreM. H. J., S. M. H. J., S., Chakravarty, , and Goodwin, R. M., John Von Neumann and Modern Economics, Clarendon Press, Oxford, 1989.Google Scholar
Reid, Constance, 1972. David Hilbert, Springer Verlag, Berlin.Google Scholar
Waismann, Friedrich. 1982. Lectures on the Philosophy of Mathematics, Editions Rodopi B. V., Amsterdam.CrossRefGoogle Scholar
Weyl, Hermann. 1944. “David Hilbert and His Mathematical Work,” Bulletin of the American Mathematical Society, 50, 612–54.CrossRefGoogle Scholar
Weintraub E., Roy. 1979. Microfoundations: the Compatibility of Microeconomics and Macroeconomics, Cambridge University Press, Cambridge, England.CrossRefGoogle Scholar
Weintraub E., Roy. 1985. General Equilibrium Analysis. Studies in Appraisal, Cambridge University Press, New York.Google Scholar