We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We discuss some of the work of Laci Kovács on representation theory and related topics.
Alperin, J. L. and Kovács, L. G., ‘Periodicity of Weyl modules for SL(2, q)’, J. Algebra74(1) (1982), 52–54.Google Scholar
[2]
Blichfeldt, H., ‘On the order of linear homogeneous groups II’, Trans. Amer. Math. Soc.5 (1904), 310–325.Google Scholar
[3]
Bovdi, V. and Kovács, L. G., ‘Unitary units in modular group algebras’, Manuscripta Math.84(1) (1994), 57–72.Google Scholar
[4]
Bovdi, A., Kovács, L. G. and Mihovski, S., ‘On the orders of conjugacy classes in group algebras of p-groups’, J. Aust. Math. Soc.77(2) (2004), 185–189.Google Scholar
[5]
Bovdi, V., Kovács, L. G. and Sehgal, S. K., ‘Symmetric units in modular group algebras’, Comm. Algebra24(3) (1996), 803–808.Google Scholar
[6]
Brauer, R., ‘On the connection between the ordinary and the modular characters of groups of finite order’, Ann. of Math. (2)42 (1941), 926–935.CrossRefGoogle Scholar
[7]
Brauer, R., ‘A note on theorems of Burnside and Blichfeldt’, Proc. Amer. Math. Soc.15 (1964), 31–34.Google Scholar
[8]
Bryant, R. M. and Kovács, L. G., ‘A note on generalized characters’, Bull. Aust. Math. Soc.5 (1971), 265–269.Google Scholar
[9]
Bryant, R. M. and Kovács, L. G., ‘Tensor products of representations of finite groups’, Bull. Lond. Math. Soc.4 (1972), 133–135.Google Scholar
[10]
Bryant, R. M. and Kovács, L. G., ‘Lie representations and groups of prime power order’, J. Lond. Math. Soc. (2)17 (1978), 415–421.Google Scholar
[11]
Bryant, R. M., Kovács, L. G. and Robinson, G. R., ‘Transitive permutation groups and irreducible linear groups’, Q. J. Math. Oxf. Ser. (2)46(184) (1995), 385–407.Google Scholar
[12]
Burnside, W., Theory of Groups of Finite Order, 2nd edn (Dover, New York, 1955).Google Scholar
[13]
Butler, M. C. R., Campbell, J. M. and Kovács, L. G., ‘On infinite rank integral representations of groups and orders of finite lattice type’, Arch. Math. (Basel)83(4) (2004), 297–308.Google Scholar
[14]
Carlson, J. F. and Kovács, L. G., ‘Tensor factorizations of group algebras and modules’, J. Algebra175(1) (1995), 385–407.Google Scholar
[15]
Dixon, J. D. and Kovács, L. G., ‘Generating finite nilpotent irreducible linear groups’, Q. J. Math. Oxf. Ser. (2)44(173) (1993), 1–15.Google Scholar
[16]
Glasby, S. P. and Kovács, L. G., ‘Irreducible modules and normal subgroups of prime index’, Comm. Algebra24(4) (1996), 1529–1546.Google Scholar
[17]
Glover, D. J., ‘A study of certain modular representations’, J. Algebra51(2) (1978), 425–475.Google Scholar
[18]
Gluck, D., Magaard, K., Riese, U. and Schmid, P., ‘The solution of the k (GV)-problem’, J. Algebra279(2) (2004), 694–719.Google Scholar
[19]
Howlett, R. B. and Kovács, L. G., ‘On the first cohomology of a group with coefficients in a simple module’, J. Algebra99(2) (1986), 518–519.Google Scholar
[20]
Isaacs, I. M., ‘The number of generators of a linear p-group’, Canad. J. Math.24 (1972), 851–858.Google Scholar
[21]
Kovács, L. G., ‘The permutation lemma of Richard Brauer. A letter to C. W. Curtis’, Bull. Lond. Math. Soc.14(2) (1982), 127–128.Google Scholar
[22]
Kovács, L. G., ‘Some representations of special linear groups’, in: The Arcata Conference on Representations of Finite Groups (Arcata, CA, 1986), Proceedings of Symposia in Pure Mathematics, 47 (Part 2) (American Mathematical Society, Providence, RI, 1987), 207–218.Google Scholar
[23]
Kovács, L. G., ‘On tensor induction of group representations’, J. Aust. Math. Soc. Ser. A49(3) (1990), 486–501.Google Scholar
[24]
Kovács, L. G., ‘Semigroup algebras of the full matrix semigroup over a finite field’, Proc. Amer. Math. Soc.116(4) (1992), 911–919.Google Scholar
[25]
Kovács, L. G. and Leedham-Green, C. R., ‘Some normally monomial p-groups of maximal class and large derived length’, Q. J. Math. Oxf. Ser. (2)37(145) (1986), 49–54.Google Scholar
[26]
Kovács, L. G. and Newman, M. F., ‘Generating transitive permutation groups’, Q. J. Math. Oxf. Ser. (2)39(155) (1988), 361–372.Google Scholar
[27]
Kovács, L. G. and Robinson, G. R., ‘Generating finite completely reducible linear groups’, Proc. Amer. Math. Soc.112(2) (1991), 357–364.Google Scholar
[28]
Kovács, L. G. and Robinson, G. R., ‘On the number of conjugacy classes of a finite group’, J. Algebra160(2) (1993), 441–460.Google Scholar
[29]
Kovács, L. G. and Sim, H.-S., ‘Nilpotent metacyclic irreducible linear groups of odd order’, Arch. Math. (Basel)65(4) (1995), 281–288.Google Scholar
[30]
Krop, L., ‘On the representations of the full matrix semigroup on homogeneous polynomials’, J. Algebra99(2) (1986), 370–421.Google Scholar
[31]
Krop, L., ‘On the representations of the full matrix semigroup on homogeneous polynomials, II’, J. Algebra102(1) (1986), 284–300.Google Scholar
[32]
Kuhn, N., ‘Generic representation theory of finite fields in nondescribing characteristic’, 2014, arXiv:1405.0318.Google Scholar
[33]
Maróti, A., ‘Bounding the number of conjugacy classes of a permutation group’, J. Group Theory8(3) (2005), 273–289.CrossRefGoogle Scholar
[34]
Robinson, G. R. and Thompson, J. G., ‘On Brauer’s k (B)-problem’, J. Algebra184(3) (1996), 1143–1160.Google Scholar