Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T08:32:29.108Z Has data issue: false hasContentIssue false

THE WORK OF L. G. KOVÁCS ON REPRESENTATION THEORY

Published online by Cambridge University Press:  16 June 2015

GEOFFREY R. ROBINSON*
Affiliation:
Institute of Mathematics, Fraser Noble Building, University of Aberdeen, Aberdeen AB24 3UE, UK email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss some of the work of Laci Kovács on representation theory and related topics.

Type
Research Article
Copyright
© 2015 Australian Mathematical Publishing Association Inc. 

References

Alperin, J. L. and Kovács, L. G., ‘Periodicity of Weyl modules for SL(2, q)’, J. Algebra 74(1) (1982), 5254.Google Scholar
Blichfeldt, H., ‘On the order of linear homogeneous groups II’, Trans. Amer. Math. Soc. 5 (1904), 310325.Google Scholar
Bovdi, V. and Kovács, L. G., ‘Unitary units in modular group algebras’, Manuscripta Math. 84(1) (1994), 5772.Google Scholar
Bovdi, A., Kovács, L. G. and Mihovski, S., ‘On the orders of conjugacy classes in group algebras of p-groups’, J. Aust. Math. Soc. 77(2) (2004), 185189.Google Scholar
Bovdi, V., Kovács, L. G. and Sehgal, S. K., ‘Symmetric units in modular group algebras’, Comm. Algebra 24(3) (1996), 803808.Google Scholar
Brauer, R., ‘On the connection between the ordinary and the modular characters of groups of finite order’, Ann. of Math. (2) 42 (1941), 926935.CrossRefGoogle Scholar
Brauer, R., ‘A note on theorems of Burnside and Blichfeldt’, Proc. Amer. Math. Soc. 15 (1964), 3134.Google Scholar
Bryant, R. M. and Kovács, L. G., ‘A note on generalized characters’, Bull. Aust. Math. Soc. 5 (1971), 265269.Google Scholar
Bryant, R. M. and Kovács, L. G., ‘Tensor products of representations of finite groups’, Bull. Lond. Math. Soc. 4 (1972), 133135.Google Scholar
Bryant, R. M. and Kovács, L. G., ‘Lie representations and groups of prime power order’, J. Lond. Math. Soc. (2) 17 (1978), 415421.Google Scholar
Bryant, R. M., Kovács, L. G. and Robinson, G. R., ‘Transitive permutation groups and irreducible linear groups’, Q. J. Math. Oxf. Ser. (2) 46(184) (1995), 385407.Google Scholar
Burnside, W., Theory of Groups of Finite Order, 2nd edn (Dover, New York, 1955).Google Scholar
Butler, M. C. R., Campbell, J. M. and Kovács, L. G., ‘On infinite rank integral representations of groups and orders of finite lattice type’, Arch. Math. (Basel) 83(4) (2004), 297308.Google Scholar
Carlson, J. F. and Kovács, L. G., ‘Tensor factorizations of group algebras and modules’, J. Algebra 175(1) (1995), 385407.Google Scholar
Dixon, J. D. and Kovács, L. G., ‘Generating finite nilpotent irreducible linear groups’, Q. J. Math. Oxf. Ser. (2) 44(173) (1993), 115.Google Scholar
Glasby, S. P. and Kovács, L. G., ‘Irreducible modules and normal subgroups of prime index’, Comm. Algebra 24(4) (1996), 15291546.Google Scholar
Glover, D. J., ‘A study of certain modular representations’, J. Algebra 51(2) (1978), 425475.Google Scholar
Gluck, D., Magaard, K., Riese, U. and Schmid, P., ‘The solution of the k (GV)-problem’, J. Algebra 279(2) (2004), 694719.Google Scholar
Howlett, R. B. and Kovács, L. G., ‘On the first cohomology of a group with coefficients in a simple module’, J. Algebra 99(2) (1986), 518519.Google Scholar
Isaacs, I. M., ‘The number of generators of a linear p-group’, Canad. J. Math. 24 (1972), 851858.Google Scholar
Kovács, L. G., ‘The permutation lemma of Richard Brauer. A letter to C. W. Curtis’, Bull. Lond. Math. Soc. 14(2) (1982), 127128.Google Scholar
Kovács, L. G., ‘Some representations of special linear groups’, in: The Arcata Conference on Representations of Finite Groups (Arcata, CA, 1986), Proceedings of Symposia in Pure Mathematics, 47 (Part 2) (American Mathematical Society, Providence, RI, 1987), 207218.Google Scholar
Kovács, L. G., ‘On tensor induction of group representations’, J. Aust. Math. Soc. Ser. A 49(3) (1990), 486501.Google Scholar
Kovács, L. G., ‘Semigroup algebras of the full matrix semigroup over a finite field’, Proc. Amer. Math. Soc. 116(4) (1992), 911919.Google Scholar
Kovács, L. G. and Leedham-Green, C. R., ‘Some normally monomial p-groups of maximal class and large derived length’, Q. J. Math. Oxf. Ser. (2) 37(145) (1986), 4954.Google Scholar
Kovács, L. G. and Newman, M. F., ‘Generating transitive permutation groups’, Q. J. Math. Oxf. Ser. (2) 39(155) (1988), 361372.Google Scholar
Kovács, L. G. and Robinson, G. R., ‘Generating finite completely reducible linear groups’, Proc. Amer. Math. Soc. 112(2) (1991), 357364.Google Scholar
Kovács, L. G. and Robinson, G. R., ‘On the number of conjugacy classes of a finite group’, J. Algebra 160(2) (1993), 441460.Google Scholar
Kovács, L. G. and Sim, H.-S., ‘Nilpotent metacyclic irreducible linear groups of odd order’, Arch. Math. (Basel) 65(4) (1995), 281288.Google Scholar
Krop, L., ‘On the representations of the full matrix semigroup on homogeneous polynomials’, J. Algebra 99(2) (1986), 370421.Google Scholar
Krop, L., ‘On the representations of the full matrix semigroup on homogeneous polynomials, II’, J. Algebra 102(1) (1986), 284300.Google Scholar
Kuhn, N., ‘Generic representation theory of finite fields in nondescribing characteristic’, 2014, arXiv:1405.0318.Google Scholar
Maróti, A., ‘Bounding the number of conjugacy classes of a permutation group’, J. Group Theory 8(3) (2005), 273289.CrossRefGoogle Scholar
Robinson, G. R. and Thompson, J. G., ‘On Brauer’s k (B)-problem’, J. Algebra 184(3) (1996), 11431160.Google Scholar