No CrossRef data available.
Article contents
Value distribution of certain monomials of algebroid functions
Published online by Cambridge University Press: 09 April 2009
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Hayman has shown that if f is a transcendental meromorphic function and n ≽ 3, then fn f′ assumes all finite values except possibly zero infinitely often. We extend his result in three directions by considering an algebroid function ω, its monomial ωn0 ω′n1, and by estimating the growth of the number of α-points of the monomial.
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1997
References
[2]Hayman, W., ‘Picard values of meromorphic functions and their derivatives’, Ann. of Math. (2) 70 (1959), 9–42.CrossRefGoogle Scholar
[4]Katajamäki, K., ‘Algebroid solutions of binomial and linear differential equations’, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes No. 90 (1993), 48pp.Google Scholar
[5]Katajamäki, K., ‘Value distribution of certain differential polynomials of algebroid functions’. Arch. Math. (Basel) 67 (1996), 422–429.CrossRefGoogle Scholar
[7]Selberg, H., ‘Über die Wertverteilung der algebroiden Funktionen’, Math. Z. 31 (1930), 709–728.CrossRefGoogle Scholar
[8]Ullrich, E., ‘Über den Einfluß der Verzweigtheit einer Algebroide auf ihre Wertverteilung’, J. Reine Angew. Math. 167 (1932), 198–220.CrossRefGoogle Scholar
[9]Valiron, G., ‘Sur la dérivée des fonctions algébroïdes’, Bull. Soc. Math. France 59 (1931), 17–39.CrossRefGoogle Scholar
You have
Access