Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-12-01T06:44:41.367Z Has data issue: false hasContentIssue false

The theory of functional least squares

Published online by Cambridge University Press:  09 April 2009

Sándor Csörgő
Affiliation:
Bolyai Institute Szeged UniversityH-6720 Szeged Hungary
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The functional least squares procedure of Chambers and Heathcote for estimating the slope parameter in a linear regression model is analysed. Strong uniform consistency for the family of these estimators is proved together with a necessary and sufficient condition for weak convergence in the space of continuous vector valued functions. These results are then used to develop the asymptotic normality of an adaptive version of the functional least squares estimator with minimum limiting variance.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1983

References

Chambers, R. L. and Heathcote, C. R. (1981), ‘On the estimation of slope and the identification of outliers in linear regression’, Biometrika 68, 2133.CrossRefGoogle Scholar
Chung, K. L. (1974), A course in probability theory (Academic Press, New York).Google Scholar
Csörgő, S. (1980), Empirical characteristic functions (Carleton Mathematical Lecture Notes No. 26, Carleton University, Ottawa, Canada).Google Scholar
Csörgő, S. (1981a), ‘Limit behaviour of the empirical characteristic function’, Ann. Probability 9, 130144.CrossRefGoogle Scholar
Csörgő, S. (1981b), ‘Multivariate empirical characteristic functions’, Z. Wahrscheinlichkeitstheorie verw. Gebiete 55, 203229.CrossRefGoogle Scholar
Fernique, X. (1978), ‘Continuité et théoréme central limite pour les transformées de Fourier des measures aléatoires du second ordre’, Z. Wahrscheinlichkeitstheorie verw. Gebiete 42, 5766.CrossRefGoogle Scholar
Heathcote, C. R. (1982), ‘Linear regression by functional least squares’, J. Appl. Probability 19A. Essays in Statistical Science, P.A.P. Moran Festschrift, edited by J. Gani and E. J. Hannan, pp.Google Scholar
Marcus, M. B. (1981), ‘Weak convergence of the empirical characteristic function’, Ann. Probability 9, 194201.CrossRefGoogle Scholar
Rudin, W. (1976), Principles of mathematical analysis (McGraw-Hill, Tokyo).Google Scholar
Skorohod, A. V. (1956), ‘Limit theorems for stochastic processes’, Teor. Verojatnost. i Primenen. 1, 289319.Google Scholar
English translation: Theory of Probability Appl. 1, 261290.Google Scholar