Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-19T01:48:52.419Z Has data issue: false hasContentIssue false

A system of PDEs for Riemannian spaces

Published online by Cambridge University Press:  09 April 2009

Bruce van Brunt
Affiliation:
Mathematics Institute of Fundamental Sciences Massey Univeristy Private Bag11222 Palmerston NorthNew Zealand e-mail: [email protected]@[email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Matsumoto [10] remarked that some locally projectively flat Finsler spaces of non-zero constant curvature may be Riemannian spaces of non-zero constant curvature. The Riemannian connection, however, must be metric compatible, and this requirement places restrictions on the geodesic coefficients for the Finsler space in the form of a system of partial differential equations. In this paper, we derive this system of equations for the case where the geodesic coefficients are quadratic in the tangent space variables yi, and determine the solutions. We recover two standard Remannian metrics of non-zero constant curvature from this class of solutions.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2007

References

[1]Bacso, S., ‘Projective Finsler geometry’, Paper presented at the workshop on Finsler Geometry, University of California, Berkeley, 2002.Google Scholar
[2]Berwald, L., ‘Über Parallelubertragung in Räumen mit allgemeiner Massbestimmung’, Jber. Deutsch. Math-Verein 34 (1926), 213220.Google Scholar
[3]Berwald, L., ‘Untersechung der Krümmung alldemeinen metrischer Räume auf Grund des in ihnen herrschenden Parallelismus’, Math. Z. 25 (1926), 4073.CrossRefGoogle Scholar
[4]Berwald, L., ‘Parallelubertragung in allgemeinen Räumen’, Atti Congr. Intern. Mat. Bologna 4 (1928), 263270.Google Scholar
[5]Berwald, L., ‘Über die n-diemensionalen Geometrien konstanter Krümmung, in denen die Geraden die kürzenesten sind’, Math. Z. 30 (1929), 449469.CrossRefGoogle Scholar
[6]Berwald, L., ‘Über eine characteristic eigenschaft der allgemeinen Räume konstanter Krümmung mit gradlinigen Extremalen’, Monatsh. Math. Phys. 36 (1929), 315330.CrossRefGoogle Scholar
[7]Birkhoff, G. and MacLane, S., A survey of modern algebra (Macmillan, New York, 1957).Google Scholar
[8]Coddington, E. and Levinson, N., Theory of ordinary differential equations (McGraw-Hill, New York, 1955).Google Scholar
[9]Fukui, M. and Yamada, T., ‘On projective mappings in Finsler geometry’, Tensor (N.S.) 35 (1981), 216222.Google Scholar
[10]Matsumoto, M., ‘Projective changes of Finsler metrics and projectively flat Finsler spaces’, Tensor (N.S.) 34 (1980), 303315.Google Scholar
[11]Rapcsak, A., ‘Über die bahntreuen Abblildungen metrisher Räume’, Publ. Math. Debrecen 8 (1961), 285290.CrossRefGoogle Scholar
[12]Shen, Z., Lectures on Finsler geometry (World Scientific, Singapore, 2001).CrossRefGoogle Scholar
[13]Stoker, J., Differential geometry, Pure and Applied Mathematics 20 (Wiley-Interscience, New York, 1969).Google Scholar
[14]Szabo, Z. I., ‘Positive definite Berwald spaces (Structure theorems on Berwald spaces)’, Tensor (N.S.) 35 (1981), 2539.Google Scholar