Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T07:49:03.201Z Has data issue: false hasContentIssue false

Subgroups of finitely presented metabelian groups of finite rank

Published online by Cambridge University Press:  09 April 2009

James Boler
Affiliation:
Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74074, U.S.A.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let G be a finitely generated metabelian group whose derived group G′ has finite rank. It is shown that G can be embedded in a finitely presented metabelian group H with H′ of finite rank.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1976

References

Atiyah, M. F. and MacDonald, I. G. (1969), Introduction to Commutative Algebra (Addision Wesley, Reading, Massachusetts: London; Don Mills, Ontario).Google Scholar
Baumslag, Gilbert (1973), ‘Subgroups of finitely generated metabelian groups’, J. Austral. Math. Soc. 16, 98110.CrossRefGoogle Scholar
Boler, James S. (1974), ‘Embedding and conjugacy in metabelian groups’, (PhD thesis, Rice University, Texas).Google Scholar
Hall, P. (1954), ‘Finiteness conditions for soluble groups’, Proc. London Math. Soc. (3) 4, 419436.Google Scholar
Hall, P. (1959), ‘On the finiteness of certain soluble groups’, Proc. London Math. Soc. (3) 9, 595622.CrossRefGoogle Scholar
Hall, P. (1961), ‘The Frattini subgroups of finitely generated groups’, Proc. London Math. Soc. (3) 11, 327352.CrossRefGoogle Scholar
Kurosh, A. G. (1955), Theory of Groups I (translated by Hirsch, K. A.) (Chelsea, New York, New York).Google Scholar
Maлbiieß, A. И [Mal'cev, A. I.], ‘O rpynnax kopeчнpo paннa’, [On groups of finite rank] Math. Sb. N.S. 22 (64), 351352.Google Scholar
Wehrfritz, B. A. F. (1973), Infinite Linear Groups. An account of the Group-Theoretic Properties of Infinite Groups of Matrices (Ergebnisse der Mathematik und ihrer Grenzgebiete, 76, Springer-Verlag, Berlin, Heidelberg, New York).Google Scholar