Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T08:31:53.007Z Has data issue: false hasContentIssue false

Special pairs of semi-bilogic and bilogic tetrahedra

Published online by Cambridge University Press:  09 April 2009

Sahib Ram Mandan
Affiliation:
Flat 19, “Vijaya”, Chhedanagar, Bombay-400089., India
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let (A), (B) be a special pair of perspective tetrahedra such that the 4 joins of their corresponding vertices are perpendicular to their plane of perspectivity. It has been already established (Mandan (1977a), p. 573) that they are, in general, skew-orthologic such that the perpendiculars from the vertices of one to the corresponding opposite faces of the other lie in a regulus. Here we give a construction of a special pair of semi-orthologic and orthologic tetrahedra, the said regulus degenerating into 2 pairs of intersecting lines and 4 concurrent lines respectively. Following Thébault ((1952), p. 25; (1955), p. 67), we call them semi-bilogic and bilogic respectively.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1979

References

Baker, H. F. (1930), Principles of geometry II (Cambridge University Press).Google Scholar
Court, N. A. (1953), ‘Semi-orthocentric tetrahedron’, Amer. Math. Monthly 60, 306310.CrossRefGoogle Scholar
Coxeter, H. S. M. (1964), Projective geometry (Blaisdell, New York).Google Scholar
Coxeter, H. S. M. (1969), Introduction to geometry (Wiley, New York).Google Scholar
Coxeter, H. S. M. (1975), ‘Desargues configurations and their collineation groups’, Math. Proc. Camb. Philos. Soc. 78, 227246.CrossRefGoogle Scholar
Cremona, L. (1960), Projective geometry (Dover, New York).Google Scholar
Gerber, L. (1977), ‘Associated and skew-orthologic simplexes’, Trans. Amer. Math. Soc. 231, 4763.CrossRefGoogle Scholar
Mandan, S. R. (1957), ‘Spheres associated with a semi-orthocentric tetrahedron’, Res. Bull. Panjab Univ. 127, 447451.Google Scholar
Mandan, S. R. (1958), ‘An S-configuration in Euclidean and elliptic n-space’, Canad. J. Math. 10, 489510.CrossRefGoogle Scholar
Mandan, S. R. (1965), ‘Altitudes of a general n-simplex’, J. Austral. Math. Soc. 5, 409415.CrossRefGoogle Scholar
Mandan, S. R. (1977a), ‘Skew orthologic perspective simplexes’, J. Mathematical and Physical Sci. 11, 569576.Google Scholar
Mandan, S. R. (1977b), ‘On a Gerber's conjecture’, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (Ser. VIII) 61, 411419.Google Scholar
Mandan, S. R. (1979), ‘Orthologic Desargues' figure’, J. Austral. Math. Soc. (Series A) 28, 295302.CrossRefGoogle Scholar
Mandan, S. R. and Sanyal, A. (1977), ‘An extension of Hesse's theorem’, Math. Student 45, 9294.Google Scholar
Servais, C. (1921), ‘Un groupe de trois tétraedres’, Bull. Acad. Roy. Belgique, 5570.Google Scholar
Sondat, P. (1894), ‘Question 38’, L'intermediate des mathematicians 1, 10Google Scholar
(solved by Sollerstinsky, , L'intermediaire des mathematicians 1, 4445).Google Scholar
Thébault, V. (1952), ‘Perspective and orthologic triangles and tetrahedrons’, Amer. Math. Monthly 59, 2428.CrossRefGoogle Scholar
Thebault, V. (1955), Parmi les belles figures de la geometrie dans l'espace (Libraire Vuibert, Paris).Google Scholar