Article contents
Some properties of endomorphisms in residually finite groups
Published online by Cambridge University Press: 09 April 2009
Abstract
If ε is an endomorphism of a finitely generated residually finite group onto a subgroup Fε of finite index in F, then there exists a positive integer k such that ε is an isomorphism of Fεk. If K is the kernel of ε, then K is a finite group so that if F is a non trivial free product or if F is torsion free, then ε is an isomorphism on F. If ε is an endomorphism of a finitely generated resedually finite group onto a subgroup Fε (not necessatily of ginite index in F) and if the kernel of ε obeys the minimal condition for subgroups then there exists a positive integer k such that ε is an isomorphism on Fεk.
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1977
References
- 10
- Cited by