Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T03:00:46.907Z Has data issue: false hasContentIssue false

Some problems in partitio numerorum

Published online by Cambridge University Press:  09 April 2009

P. Erdös
Affiliation:
Mathematical InstituteHungarian Academy of Science Budapest Humgary
J. H. Loxton
Affiliation:
School of MathematicsUniversity of New South Wales Kensington, N.S.W., Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We consider some unconventional partition problems in which the parts of the partition are restricted by divisibility conditions, for example, partitions n = a1+…+ak into positive integers a1, …, ak such that a1 ∣ a2 ∣ … ∣ ak. Some rather weak estimates for the various partition functions are obtained.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1979

References

de Bruijn, N. G. (1948), ‘On Mahler's partition problem’, Proc. Kon. Nederl. Akad. Wet. (A) 51, 659669.Google Scholar
Erdös, P. (1941), ‘On some asymptotic formulas in the theory of “factorisatio numerorum”’, Annals of Math. 42, 989993.CrossRefGoogle Scholar
See also, Ann. of Math. 44 (1943), 648651.Google Scholar
Grosswald, E. (1974), ‘Verallgemeinerte Eulersche Zahlen’, Math. Z. 140, 173177.CrossRefGoogle Scholar
Hardy, G. H. and Wright, E. M. (1968). An introduction to the theory of numbers, 4th ed. (Oxford University Press).Google Scholar
Hille, E. (1936), ‘A problem in “factorisatio numerorum”’, Acta Arith. 2, 136144.CrossRefGoogle Scholar
Hooley, C. (1976), Applications of sieve methods to the theory of numbers (Cambridge Tracts in Mathematics 70, Cambridge University Press).Google Scholar
Ingham, A. E. (1941), ‘A Tauberian theorem for partitions’, Ann. of Math. 42, 10751090.CrossRefGoogle Scholar
Kalmár, L. (1931), ‘über die mittlere Anzahl der Produktdarstellungen der Zahlen. (Erste Mitteilung)’, Acta Litt. ac Scient. Szeged 5, 95107.Google Scholar
Pennington, W. B. (1953), ‘On Mahler's partition problem’, Ann. of Math. 57, 531546.CrossRefGoogle Scholar
Ramanujan, S. (1915), ‘Highly composite numbers’, Proc. London Math. Soc. (2) 14, 347409.CrossRefGoogle Scholar
Sierpinski, W. (1955), ‘Sur une propriété des nombres naturels’, Annali di Mat. pura ed appl. (4) 39, 6974.CrossRefGoogle Scholar