Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T08:52:38.370Z Has data issue: false hasContentIssue false

SOME MONODROMY GROUPS OF FINITE INDEX IN $\mathit{Sp}_{4}(\mathbb{Z})$

Published online by Cambridge University Press:  30 March 2015

JÖRG HOFMANN
Affiliation:
Institut für Mathematik, Johannes Gutenberg University, 55099 Mainz, Germany email [email protected]
DUCO VAN STRATEN*
Affiliation:
Institut für Mathematik, Johannes Gutenberg University, 55099 Mainz, Germany email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We determine the index of five of the seven hypergeometric Calabi–Yau operators that have finite index in $\mathit{Sp}_{4}(\mathbb{Z})$ and in two cases give a complete description of the monodromy group. Furthermore, we find six nonhypergeometric Calabi–Yau operators with finite index in $\mathit{Sp}_{4}(\mathbb{Z})$, most notably a case where the index is one.

Type
Research Article
Copyright
© 2015 Australian Mathematical Publishing Association Inc. 

References

Almkvist, G., ‘Strängar i månsken I’, Normat 51 (2003), 2233; II, Normat 51(2) (2003), 63–79.Google Scholar
Almkvist, G., van Enckevort, C., van Straten, D. and Zudilin, W., Tables of Calabi–Yau equations,arXiv:math/0507430, Online version: www.mathematik.uni-mainz.de/CYequations/.Google Scholar
Batyrev, V. and van Straten, D., ‘Generalized hypergeometric functions and rational curves on Calabi–Yau complete intersections in toric varieties’, Comm. Math. Phys. 168 (1995), 493533.CrossRefGoogle Scholar
Behr, H., ‘Eine endliche Präsentation der symplektischen Gruppe Sp 4(ℤ)’, Math. Z. 141 (1975), 4756.CrossRefGoogle Scholar
Bogner, M., ‘On differential operators of Calabi–Yau type’, Doctoral Thesis, Mainz, 2012.Google Scholar
Brav, C. and Thomas, H., ‘Thin monodromy in Sp (4)’, Compositio Math. to appear, arXiv:1210.0523.Google Scholar
Candelas, P., de la Ossa, X., Green, P. and Parkes, L., ‘A pair of Calabi Yau manifolds as an exactly soluble superconformal theory’, Nucl. Phys. B 359 (1991), 2174.CrossRefGoogle Scholar
Chen, Y., Yang, Y. and Yui, N., ‘Monodromy of Calabi–Yau differential equations, (With an appendix by Cord Erdenberger)’, J. reine angew. Math. 616 (2008), 167203.Google Scholar
Doran, C. and Morgan, J., ‘Mirror symmetry and integral variations of Hodge structure underlying one parameter families of Calabi–Yau threefolds’, in: Mirror Symmetry V, 517–537, AMS/IP Studies in Advanced Mathematics, 38 (American Mathematical Society, Providence, RI, 2006).Google Scholar
The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.6.5, 2013 (http://www.gap-system.org).Google Scholar
Hua, L. K. and Reiner, I., ‘On the generators of the symplectic modular group’, Trans. Amer. Math. Soc. 65 (1949), 415426.CrossRefGoogle Scholar
Klemm, A. and Theisen, S., ‘Consideration of one modulus Calabi–Yau compactification: Picard–Fuchs equation, Kähler potentials and mirror maps’, Nucl. Phys. B 389 (1993), 753.CrossRefGoogle Scholar
Klemm, A. and Theisen, S., ‘Mirror maps and instanton sums for intersections in weighed projective space’, Modern Phys. Lett. A 9 (1994), 18071817.CrossRefGoogle Scholar
Levelt, A. H. M., ‘Hypergeometric functions’, Doctoral Thesis, University of Amsterdam, 1961.CrossRefGoogle Scholar
Libgober, A. and Teitelbaum, J., ‘Lines on Calabi–Yau complete intersections, mirror symmetry, and Picard–Fuchs equations’, Int. Math. Res. Not. 129 (1993), 2939.CrossRefGoogle Scholar
Morrison, D., ‘Picard–Fuchs equations and mirror maps for hypersurfaces’, in: Essays on Mirror Manifolds (ed. Yau, S.-T.) (International Press, Hong Kong, 1992), 241264.Google Scholar
Neubüser, L., ‘An elementary introduction to coset table methods in computational group theory’, in: Groups – St Andrews 1981, London Math. Society Lecture Notes, 71 (eds. Campbell, C. M. and Robertson, E. F.) (Cambridge University Press, Cambridge, 1982), 145.Google Scholar
Rodrigues-Villegas, F., ‘Hypergeometric families of Calabi–Yau manifolds’, in: Calabi–Yau Manifolds and Mirror Symmetry, Fields Institute Communications, 38 (eds. Yui, N. and Lewis, J. D.) (American Mathematical Society, Providence, RI, 2003), 223231.Google Scholar
Singh, S. and Venkataramana, T. N., ‘Arithmeticity of certain symplectic hypergeometric groups’, Duke Math. J. 163(3) (2014), 591617.CrossRefGoogle Scholar
Singh, S., ‘Arithmeticity of 4 hypergeometric monodromy groups associated to the Calabi–Yau threefolds’, Int. Math. Res. Not. IMRN (2014): doi:10.1093/imrn/rnu217.Google Scholar