Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T09:11:48.177Z Has data issue: false hasContentIssue false

Some inequalities for trigonometric polynomials

Published online by Cambridge University Press:  09 April 2009

Clément Frappier
Affiliation:
Département de Mathématiques et de StatistiqueUniversité de MontréalC.P. 6128, Succursale “A” Montréal, Québec H3C 3J7, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We obtain various refinements and generalizations of a classical inequality of S. N. Bernstein on trigonometric polynomials. Some of the results take into account the size of one or more of the coefficients of the trigonometric polynomial in question. The results are obtained using interpolation formulas.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1985

References

[1]Bernstein, S. N., Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d'une variable réelle (Gauthier-Villars, Paris, 1926).Google Scholar
[2]Frappier, C., Rahman, Q. I. and Ruscheweyh, St., ‘New inequalities for polynomials’, Trans. Amer. Math. Soc. 288 (1985), 6999.CrossRefGoogle Scholar
[3]Giroux, A. and Rahman, Q. I., ‘Inequalities for polynomials with a prescribed zero’, Trans. Amer. Math. Soc. 193 (1974), 6798.CrossRefGoogle Scholar
[4]Polya, G. and Szegö, G., Problems and theorems in analysis, Vol. II (Springer-Verlag, Berlin, Heidelberg, 1972).Google Scholar
[5]Riesz, M., ‘Eine trigonometrische Interpolationsformel und einige Ungleichungen für Polynome’, Jahresber. Deutsch. Math.-Verein. 23 (1914), 354368.Google Scholar
[6]Rogosinski, W. and Szegö, G., ‘Über die Abschnitte von Potenzreihen die in einen Kreise beschränkt bleiben’, Math. Z. 28 (1928), 7394.CrossRefGoogle Scholar
[7]Szegö, G., ‘Über einen Satz des Herrn Serge Bernstein’, Schr. Königsb. gelehrt. Ges. 22 (1928), 5970.Google Scholar
[8]Visser, G., ‘A simple proof of certain inequalities concerning polynomials’, Nederl. Akad. Wetensch. Proc. (47), 276281Google Scholar
= Indag. Math. 7 (1945), 8186.Google Scholar
[9]Visser, G. and Van der Corput, J. G., ‘Inequalities concerning polynomials and trigonometric polynomials’, Nederl. Akad. Wetensch. Proc. 8 (1946), 238247.Google Scholar