Published online by Cambridge University Press: 09 April 2009
A variety of groups is an equationally defined class of groups: equivalently, it is a class of groups closed under the operations of taking cartesian products, subgroups, and quotient groups. If and are varieties, then is the class of all groups G with a normal subgroup N in such that G/N is in ; is a variety, called the product of and . We denote by the variety generated by the unit group, and by the variety of all groups. We say that a variety is indecomposable if , and cannot be written as a product , with both and One of the basic results in the theory of varieties of groups is that the set of varieties, excluding , and with multiplication of varieties as above, is a free semi-group, freely generated by the indecomposable varieties. Thus one would like to be able to decide whether a given variety is indecomposable or not. In connection with this question, Hanna Neumann raises the following problem (as part of Problem 7 in her book [7]): Problem 1. Ifandprove that [] is indecomposable unless bothandhave a common non-trivial right hand factor.