Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-27T14:02:20.392Z Has data issue: false hasContentIssue false

Simple surjective algebras having no proper subalgebras

Published online by Cambridge University Press:  09 April 2009

Ágnes Szendrei
Affiliation:
Bolyai InstituteAradi vértanúk tere 1 6720 Szeged, Hungary
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that every finite, simple, surjective algebra having no proper subalgebras is either quasiprimal or affine or isomorphic to an algebra term equivalent to a matrix power of a unary permutational algebra. Consequently, it generates a minimal variety if and only if it is quasiprimal. We show also that a locally finite, minimal variety omitting type 1 is minimal as a quasivariety if and only if it has a unique subdirectly irreducible algebra.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1990

References

[1]Bergman, C. and McKenzie, R., ‘Minimal varieties and quasivarieties’, J. Austral. Math. Soc., to appear.Google Scholar
[2]Clark, D. M. and Krauss, P. H., ‘Plain para primal algebras’, Algebra Universalis 11 (1980), 365388.CrossRefGoogle Scholar
[3]Csákány, B., ‘Completeness in coalgebras’, Acta Sci. Math. (Szeged) 48 (1985), 7584.Google Scholar
[4]Hobby, D. and McKenzie, R., The structure of finite algebras (Tame congruence theory), (Contemp. Math., vol. 76, Amer. Math. Soc., Providence, R. I., 1988).CrossRefGoogle Scholar
[5]Jónsson, B., ‘Algebras whose congruence lattices are distributive’, Math. Scand. 21 (1967), 110121.CrossRefGoogle Scholar
[6]McKenzie, R., ‘On minimal, locally finite varieties with permuting congruence relations’, preprint, 1976.Google Scholar
[7]McKenzie, R., ‘Finite forbidden lattices’, Universal algebra and lattice theory, Proc. Conf. Puebla, 1982, pp. 176205 (Lecture Notes in Math. 1004, Springer-Verlag, 1983).Google Scholar
[8]Pálfy, P. P. and Szendrei, Á., ‘Unary polynomials in algebras II’, Contributions to general algebra, Proc. Klagenfurt Conf., 1982, pp. 273290 (Verlag Hölder-Pichler-Tempsky, Wien, Verlag Teubner, Stuttgart, 1983).Google Scholar
[9]Pixley, A. F., ‘Functionally complete algebras generating distributive and permutable classes’, Math. Z. 114 (1970), 361372.Google Scholar
[10]Pixley, A. F., ‘The ternary discriminator function in universal algebra’, Math. Ann. 191 (1971), 167180.CrossRefGoogle Scholar
[11]Salomaa, A. A., ‘A theorem concerning the composition of functions of several variables ranging over a finite set’, J. Symbolic Logic 25 (1960), 203208.CrossRefGoogle Scholar
[12]Slupecki, J., ‘Completeness criterion for systems of many-valued propositional calculus’, C. R. des Séances de la Société des Sciences et des Lettres de Varsovie Cl. II 32 (1939), 102109 (Polish); English transl., Studia Logica 30 (1972), 153–157.Google Scholar
[13]Smith, J. D. H., Mal'cev varieties, (Lecture Notes in Math. 554, Springer-Verlag, Berlin, 1976).CrossRefGoogle Scholar
[14]Szendrei, Á., Clones in universal algebra (Séminaire de Mathématiques Supérieures, vol. 99, Les Presses de l' Université de Montréal, Montréal, 1986).Google Scholar
[15]Szendrei, Á., ‘Idempotent algebras with restrictions on subalgebras’, Acta Sci. Math. (Szeged) 51 (1987), 251268.Google Scholar
[16]Szendrei, Á., ‘The primal algebra characterization theorem revisited’, Algebra Universalis, submitted.Google Scholar
[17]Taylor, W., ‘The fine spectrum of a variety’, Algebra Universalis 5 (1975), 262303.Google Scholar