Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T05:32:18.106Z Has data issue: false hasContentIssue false

SHARP CONSTANTS BETWEEN EQUIVALENT NORMS IN WEIGHTED LORENTZ SPACES

Published online by Cambridge University Press:  22 January 2010

SORINA BARZA
Affiliation:
Department of Mathematics, Karlstad University, SE-65188 Karlstad, Sweden (email: [email protected])
JAVIER SORIA*
Affiliation:
Department of Applied Mathematics and Analysis, University of Barcelona, E-08007 Barcelona, Spain (email: [email protected])
*
For correspondence; e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For an increasing weight w in Bp (or equivalently in Ap), we find the best constants for the inequalities relating the standard norm in the weighted Lorentz space Λp(w) and the dual norm.

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2010

Footnotes

This research was partially supported by grants MTM2007-60500 and 2005SGR00556.

References

[1]Ariño, M. A. and Muckenhoupt, B., ‘Maximal functions on classical Lorentz spaces and Hardy’s inequality with weights for nonincreasing functions’, Trans. Amer. Math. Soc. 320 (1990), 727735.Google Scholar
[2]Barza, S., Kolyada, V. and Soria, J., ‘Sharp constants related to the triangle inequality in Lorentz spaces’, Trans. Amer. Math. Soc. 361 (2009), 55555574.CrossRefGoogle Scholar
[3]Bennett, C. and Sharpley, R., Interpolation of Operators (Academic Press, New York, 1988).Google Scholar
[4]Carro, M. J., Pick, L., Soria, J. and Stepanov, V. D., ‘On embeddings between classical Lorentz spaces’, Math. Inequal. Appl. 4 (2001), 397428.Google Scholar
[5]Carro, M. J., Raposo, J. A. and Soria, J., Recent Developments in the Theory of Lorentz Spaces and Weighted Inequalities, Memoirs of the American Mathematical Society, 187 (American Mathematical Society, Providence, RI, 2007).CrossRefGoogle Scholar
[6]Carro, M. J. and Soria, J., ‘Weighted Lorentz spaces and the Hardy operator’, J. Funct. Anal. 112 (1993), 480494.CrossRefGoogle Scholar
[7]Cerdà, J. and Martín, J., ‘Weighted Hardy inequalities and Hardy transforms of weights’, Studia Math. 139 (2000), 189196.Google Scholar
[8]Halperin, I., ‘Function spaces’, Canad. J. Math. 5 (1953), 273288.Google Scholar
[9]Hardy, G. H., Littlewood, J. E. and Pólya, G., Inequalities, 2nd edn (Cambridge University Press, Cambridge, 1952).Google Scholar
[10]Kamińska, A. and Parrish, A. M., ‘Convexity and concavity constants in Lorentz and Marcinkiewicz spaces’, J. Math. Anal. Appl. 343 (2008), 337351.CrossRefGoogle Scholar
[11]Korenovskiĭ, A. A., ‘The exact continuation of a reverse Hölder inequality and Muckenhoupt’s condition’, Mat. Zametki 52(6) (1992), 3244 (Engl. Transl. Math. Notes 52(5–6) (1992), 1192–1201).Google Scholar
[12]Lorentz, G. G., ‘Some new functional spaces’, Ann. of Math. (2) 51 (1950), 3755.CrossRefGoogle Scholar
[13]Lorentz, G. G., ‘On the theory of spaces Λ’, Pacific J. Math. 1 (1951), 411429.Google Scholar
[14]Muckenhoupt, B., ‘Weighted norm inequalities for the Hardy maximal function’, Trans. Amer. Math. Soc. 165 (1972), 207227.CrossRefGoogle Scholar
[15]Sawyer, E., ‘Boundedness of classical operators on classical Lorentz spaces’, Studia Math. 96 (1990), 145158.CrossRefGoogle Scholar