Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T17:10:01.619Z Has data issue: false hasContentIssue false

Separating conjugates in amalgamated free products and HNN extensions

Published online by Cambridge University Press:  09 April 2009

Joan L. Dyer
Affiliation:
Lehman college and the Graduate CenterC.U.N.Y. New York, U.S.A.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A group G is termed conjugacy separable (c.s.) if any pair of distinct conjugacy classes may be mapped to distinct conjugacy classes in some finite epimorph of G. The free product of A and B with cyclic amalgamated subgroup H is shown to be c.s. if A and B are both free, or are both finitely generated nilpotent groups. Further, one-relator groups with nontrivial center and HNN extensions with c.s. base group and finite associated subgroups are also c.s.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1980

References

Armstrong, S. M. (1977), One-relator groups with non-trivial centre (M.Phil. Thesis, Queen Mary College).Google Scholar
Baumslag, G. (1963), ‘On the residual finiteness of generalized free products of nilpotent groups’, Trans. Amer. Math. Soc. 106, 193209.CrossRefGoogle Scholar
Baumslag, G. (1965), ‘Residual nilpotence and relations in free groups’, J. Algebra 2, 271282.CrossRefGoogle Scholar
Baumslag, G. (1971), Lecture notes on nilpotent groups (Amer. Math. Soc., C.B.M.S. Regional Conf. Ser. in Math., No. 2).Google Scholar
Baumslag, G. and Solitar, D. (1962), ‘Some two-generator one-relator non-Hopfian groups’, Bull. Amer. Math. Soc. 68, 199201.CrossRefGoogle Scholar
Baumslag, G. and Taylor, T. (1968), ‘The centre of groups with one defining relator’, Math. Ann. 175, 315319.CrossRefGoogle Scholar
Blackburn, N. (1965), ‘Conjugacy in nilpotent groups’, Proc. Amer. Math. Soc. 16, 143148.CrossRefGoogle Scholar
Collins, D. J. (1969), ‘Recursively enumerable degrees and the conjugacy problem’, Ada Math. 122, 115160.Google Scholar
Dyer, J. L. (1979), ‘Separating conjugates in free-by-finite groups’, J. London Math. Soc. (to appear).CrossRefGoogle Scholar
Formanek, E. (1976), ‘Conjugate separability in polycyclic groups’, J. Algebra 42, 110.CrossRefGoogle Scholar
Karrass, A., Pietrowski, A. and Solitar, D. (1972), ‘Finite and infinite cyclic extensions of free groups’, J. Austral. Math. Soc. 16, 458466.CrossRefGoogle Scholar
Lipschutz, S. (1966), ‘Generalizations of Dehn's result on the conjugacy problem’, Proc. Amer. Math. Soc. 17, 759762.Google Scholar
Lyndon, R. C. and Schupp, P. E. (1977), Combinatorial group theory, Ergebnisse der Mathematik Bd. 89 (Springer-Verlag, Berlin-Heidelberg-New York).Google Scholar
Magnus, W. (1935), ‘Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring’, Math. Ann. 111, 259280.CrossRefGoogle Scholar
Magnus, W., Karrass, A. and Solitar, D. (1966), Combinatorial group theory, Pure and Applied Math. Vol. XIII (Wiley-Interscience, New York-London-Sydney.)Google Scholar
Miller, C. F. III (1971), On group-theoretic decision problems and their classification, Ann. of Math. Studies 68 (Princeton University Press, Princeton).Google Scholar
Neumann, B. H. (1954), ‘An essay on free products of groups with amalgamations’, Philos. Trans. Roy. Soc. London Ser. A 246, 503554.Google Scholar
Stebe, P. F. (1968), ‘Residual finiteness of a class of knot groups’, Comm. Pure Appl. Math. 21, 563583.CrossRefGoogle Scholar
Stebe, P. F. (1970), ‘A residual property of certain groups’, Proc. Amer. Math. Soc. 26, 3742.CrossRefGoogle Scholar
Stebe, P. F. (1971), ‘Conjugacy separability of certain free products with amalgamation’, Trans. Amer. Math. Soc. 156, 119129.CrossRefGoogle Scholar
Stebe, P. F. (1976a), ‘ResiduaI solvability of an equation in nilpotent groups’, Proc. Amer. Math. Soc. 54, 5758.CrossRefGoogle Scholar
Stebe, P. F. (1976b), ‘Nests in nilpotent groups’, Houston J. Math. 2, 419426.Google Scholar