Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-08T03:30:48.586Z Has data issue: false hasContentIssue false

Second order subexponential distributions

Published online by Cambridge University Press:  09 April 2009

J. L. Geluk
Affiliation:
Erasmus University Econometric InstituteP.O. Box 1738 3000 DR Rotterdam The Netherlands
A. G. Pakes
Affiliation:
University of Western AustraliaNedlands, WA 6009, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The class of subexponential distributions S is characterized by F(0) = 0, 1 − F(2)(x) ~ 2(1 − F(x)) as x → ∞. In this paper we consider a subclass of S for which the relation 1 − F(2)(x) − 2(1 − F(x)) + (1 − F(x))2 = o(a(x)) as x → ∞ holds, where α is a positive function satisfying α(X) = 0(1 − F(x)) (x → ∞).

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1991

References

[1]Athreya, K. B. and Ney, P. E., Branching processes, Springer-Verlag (1972).CrossRefGoogle Scholar
[2]Bingham, N. H., Goldie, C. M. and Teugels, J. L., Regular variation, Cambridge University Press (1987).CrossRefGoogle Scholar
[3]Chistyakov, V. P., ‘A theorem on sums of independent, positive random variables and its application to branching processes’, Theory Prob. and Appl. 9 (1964), 640648.CrossRefGoogle Scholar
[4]Cline, D. B. H., ‘Convolution tails, product tails and domains of attraction’, Prob. Th. Rel. Fields 72 (1986), 529557.CrossRefGoogle Scholar
[5]Embrechts, P. and Goldie, C. M., ‘On convolution tails’, Stochastic Proc. Appl. 13 (1982), 263278.CrossRefGoogle Scholar
[6]Embrechts, P., ‘Subexponential distribution functions and their applications: a review’, Proc. Seventh Brasov Conf. on Prob. Theory, losifescu, M., VNU Science Press, Utrecht, (1985), 125136.CrossRefGoogle Scholar
[7]Geluk, J. L., ‘On the convolution of functions which belong to a subclass of L 1 (0, ∞)’, Applicable Analysis 20 (1985), 7988.CrossRefGoogle Scholar
[8]Geluk, J. L. and de Haan, L., Regular variation, extensions and Tauberian theorems, CWI tract 40, Centre for Mathematics and Computer Science, Amsterdam (1987).Google Scholar
[9]Goldie, C. M. and Smith, R. L., ‘Slow variation with remainder: theory and applications’, Quart. J. Math. Oxford (2), 38 (1987), 4571.CrossRefGoogle Scholar
[10]Luxemburg, W. A. J., ‘On an asymptotic problem concerning the Laplace transform’, Applicable Analysis 8 (1978), 6170.CrossRefGoogle Scholar
[11]Murphree, E. S., ‘Some new results on the subexponential class’, J. Appl. Prob. 26 (1989), 892897.CrossRefGoogle Scholar
[12]Omey, E., ‘Asymptotic properties of convolution products of functions’, Publ. Inst. Math. 43 (1988), 4157.Google Scholar
[13]Pakes, A. G., ‘On the tails of waiting-time distributions’, J. Appl. Prob. 12 (1975), 555564.CrossRefGoogle Scholar
[14]Pitman, E. J. G., ‘Subexponential distribution functions’, J. Austrah Math. Soc. Ser. A 29 (1980), 337347.CrossRefGoogle Scholar
[15]Teugels, J. L., ‘The class of subexponential distributions’, Ann. Prob. 3 (1975), 10001011.CrossRefGoogle Scholar
[16]Willekens, E., Hogere orde theorie voor subexponentiele verdelingen, Ph.D. thesis, Univ. of Louvain (1986).Google Scholar