Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-25T08:29:38.214Z Has data issue: false hasContentIssue false

Second order Dehn functions and HNN-extensions

Published online by Cambridge University Press:  09 April 2009

X. Wang
Affiliation:
Shenzhen University Shenzhen City 518060 Guangdong P. R. China e-mail: [email protected]
S. J. Pride
Affiliation:
The University of GlasgowUniversity Gardens Glasgow G12 8QW UK e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In previous work [2] calculations of subquadratic second order Dehn functions for various groups were carried out. In this paper we obtain estimates for upper and lower bounds of second order Dehn functions of HNN-extensions, and use these to exhibit an infinite number of different superquadratic second order Dehn functions. At the end of the paper several open questions concerning second order Dehn functions of groups are discussed.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1999

References

[1]Alonso, J. M., ‘Inégalités isopérimétriques et quasi-isometries’, C. R. Acad. Sci. Paris Sér. l Math. 311 (1990), 761764.Google Scholar
[2]Alonso, I. M., Bogley, W. A., Burton, R. M., Pride, S. J. and Wang, X., ‘Second order Dehn functions of groups’, Quart. J. Math. Oxford Ser. (2) 49 (1998), 130.CrossRefGoogle Scholar
[3]Alonso, J. M., Wang, X. and Pride, S. J., ‘Higher dimensional isoperimetric (or Dehn) functions of groups’, J. Group Theory 2 (1999), 81112.Google Scholar
[4]Baumslag, G., Bridson, M. R., Miller, C. F. III and Short, H., ‘Finitely presented subgroups of automatic groups and their isoperimetric functions’, J. London Math. Soc. 56 (1997), 292304.CrossRefGoogle Scholar
[5]Baumslag, G., Miller, C. F. III and Short, H., ‘Isoperimetric inequalities and the homology of groups’, Invent. Math. 113 (1993), 531560.CrossRefGoogle Scholar
[6]Bogley, W. A. and Pride, S. J., ‘Calculating generators of π2’, in: Two-dimensional homotopytheory and combinatorial group theory (eds. Metzler, W., Hog-Angeloni, C. and Sieradski, A.), London Mathematical Society Lecture Note Series 197 (Cambridge Univ. Press, Cambridge, 1993) pp. 157188.CrossRefGoogle Scholar
[7]Brady, N. and Bridson, M. R., ‘There is only one gap in the isoperimetric spectrum’, Technical report (1998).Google Scholar
[8]Bridson, M. R., ‘Polynomial isoperimetric inequalities and the length of asynchronously automatic structures’, Technical report (University of Oxford, 1996).Google Scholar
[9]Coulhon, T. and Saloff-Coste, L., ‘Isoperimetrie pour les groupes et les varietes’, Rev. Mat. Iberoamericana 9 (1998), 293314.CrossRefGoogle Scholar
[10]Epstein, D. B. A., Cannon, J. W., Holt, D. F., Levy, S. V., Paterson, M. S. and Thurston, W. P., Word processing in groups (Bartlett and Jones, Boston, 1992).CrossRefGoogle Scholar
[11]Gromov, M., ‘Asymptotic invariants of infinite groups’, in: Geometric group theory (eds. Niblo, G. and Roller, M.), London Math. Soc. Lecture Note Series 182 (OUP, 1993).Google Scholar
[12]Hilton, P. J. and Stammbach, U., A course in homological algebra, GTM 4 (Springer, New York, 1971).CrossRefGoogle Scholar
[13]Papasoglu, P., ‘Some remarks on isodiametric and isoperimetric inequalities’, Technical report (1998).Google Scholar
[14]Pride, S. J., ‘Identities among relations of group presentations’, in: Group theory from a geometric viewpoint (Trieste, 1990) (eds. Ghys, E., Haefliger, A. and Veijovsky, A.) (World Sci. Publ., Singapore, 1991) pp. 687717.Google Scholar
[15]Wang, X., ‘Mappings of groups and quasi-retractions’, J. Group Theory, to appear.Google Scholar
[16]Wang, X., ‘Second order Dehn functions of groups and monoids (Ph.D. Thesis, University of Glasgow, 1996).Google Scholar
[17]Wang, X. and Pride, S. J., ‘Second order Dehn functions of groups and monoids’, Internat. J. Alg. Comp., to appear.Google Scholar