Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T09:22:11.343Z Has data issue: false hasContentIssue false

The Schur and (weak) Dunford-Pettis properties in Banach lattices

Published online by Cambridge University Press:  09 April 2009

Anna Kamińska
Affiliation:
Department of Mathematical Sciences, The University of Memphis, Memphis TN 38152, USA e-mail: [email protected]
Mieczysław Mastyło
Affiliation:
Faculty of Mathematics, and Computer Science, A. Mickiewicz University, and Institute of Mathematics, Poznań Branch, Polish Academy of Sciences, Matejki 48/49, 60–769 Poznań, Poland e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the Schur and (weak) Dunford-Pettis properties in Banach lattices. We show that l1, c0 and l are the only Banach symmetric sequence spaces with the weak Dunford-Pettis property. We also characterize a large class of Banach lattices without the (weak) Dunford-Pettis property. In MusielakOrlicz sequence spaces we give some necessary and sufficient conditions for the Schur property, extending the Yamamuro result. We also present a number of results on the Schur property in weighted Orlicz sequence spaces, and, in particular, we find a complete characterization of this property for weights belonging to class ∧. We also present examples of weighted Orlicz spaces with the Schur property which are not L1-spaces. Finally, as an application of the results in sequence spaces, we provide a description of the weak Dunford-Pettis and the positive Schur properties in Orlicz spaces over an infinite non-atomic measure space.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2002

References

[1]Abraniovich, Y. A. and Wojtaszczyk, P., ‘The uniqueness of the order in the spaces Lp[0,1] and lp’, Mat. Zametki 18 (1975), 313325 (in Russian).Google Scholar
[2]Aliprantis, C. D. and Burkinshaw, O., Positive operators (Academic Press, New York, 1985).Google Scholar
[3]Banerjee, C. R. and Lahin, B. K., ‘On subseries of divergent series’, Amer Math. Monthly 71 (1964), 767768.Google Scholar
[4]Bergh, J. and Löfström, J., Interpolation spaces. An introduction, Grundhlehren der Math. Wissen. 223 (Springer, Berlin, 1976).CrossRefGoogle Scholar
[5]Davis, W. J., Figiel, T., Johnson, W. B. and Pelczyński, A., ‘Factoring weakly compact operators’, J. Funct. Anal. 17 (1974), 311327.CrossRefGoogle Scholar
[6]Diestel, J., ‘A survey of results related to the Dunford-Pettis property’, in: Proceedings of the Conference on Integration, Topology, and Geometry in Linear Spaces (Univ. North Carolina, Chapel Hill, N.C., 1979) (Amer. Math. Soc., Providence, R.I., 1980) pp. 1560.Google Scholar
[7]Drewnowski, L., ‘F-spaces with a basis which is shrinking but not hyper-shrinking’, Studia Math. 64 (1979), 97104.CrossRefGoogle Scholar
[8]Halperin, I. and Nakano, H., ‘Generalized lp-spaces and the Schur property’, J. Math. Soc. Japan 5 (1953), 5058.Google Scholar
[9]Hernández, F. L. and Peirats, V., ‘Weighted sequence subspaces of Orlicz function spaces isomorphic to lp’, Arch. Math. 50 (1988), 270280.CrossRefGoogle Scholar
[10]Hernández, F L. and Ruiz, C., ‘On Musielak-Orlicz spaces isomorphic to Orlicz spaces’, Comment. Math. Prace Mat. 32 (1992), 5560.Google Scholar
[11]Hudzik, H. and Kamińska, A., ‘On uniformly convexifiable and B-convex Musielak-Orlicz spaces’, Comment. Math. Prace Mat. 25 (1985), 5975.Google Scholar
[12]Janson, S., Nilsson, P. and Peetre, J., ‘Notes on Wolff's note on interpolation spaces’, Proc. London Math. Soc. 48 (1984), 283299.CrossRefGoogle Scholar
[13]Johnson, W. B., Maurey, B., Schechtman, O. and Tzafriri, L., ‘Symmetric structures in Banach spaces’, Mem. Amer. Math. Soc. (217) 19 (1979).Google Scholar
[14]Kamińska, A., ‘Indices, convexity and concavity in Musielak-Orlicz spaces’, Funct. Approx. Comment. Math. 26 (1998), 6784.Google Scholar
[15]Kamińska, A. and Mastylo, M., ‘The Dunford-Pettis property for symmetric spaces’, Canad. J. Math. 52 (2000), 789803.CrossRefGoogle Scholar
[16]Kantorovich, L. V. and Akilov, O. P., Functional analysis, 2nd revised edition, (Nauka, Moscow, 1977). English translation: (Pergamon Press, Oxford, 1982).Google Scholar
[17]Katirtzoglou, E., ‘Type and cotype in Musielak-Orlicz spaces’, J. Math. Anal. Appl. 226 (1998), 431455.CrossRefGoogle Scholar
[18]Krasnoselskii, M. A. and Rutickii, Ya. B., Convexfunctions and Orlicz spaces (Nordhoff, Gromngen, 1961).Google Scholar
[19]Kre˘n, S. O., Petunin, Ju. I. and Semenov, E. M., Interpolation of linear operators (Nauka, Moscow, 1978). English translation: (Amer. Math. Soc., Providence, R.I., 1982).Google Scholar
[20]Leung, D., ‘On the weak Dunford-Pettis property’, Arch. Math. 52 (1989), 363364.CrossRefGoogle Scholar
[21]Levy, M., ‘L'espace d'interpolation réel (A0, A1)θ, p contient lp’, C. R. Acad. Sci. Paris 289 (1979), 675677.Google Scholar
[22]Lindenstrauss, J. and Pelczyński, A., ‘Absolutely summing operators in Lp-spaces and their applications’, Studia Math. 29 (1968), 275326.CrossRefGoogle Scholar
[23]Lindenstrauss, J. and Tzafriri, L., Classical Banach spaces, Vol. I, II (Springer, Berlin, 1977, 1979).CrossRefGoogle Scholar
[24]Maligranda, L., ‘Indices and interpolation’, Disserrationes Math. (Rozprawy Mat.) 234 (1985), 49.Google Scholar
[25]Mastyło, M., ‘The universal right K property for some interpolation spaces’, Studia Math. 90 (1988), 117128.CrossRefGoogle Scholar
[26]Musielak, J., Orlicz spaces and modular spaces (Springer, Berlin, 1983).CrossRefGoogle Scholar
[27]Nielsen, N. J., ‘On the Orlicz function spaces LM(0, ∞)’, Israel J. Math. 20 (1975), 237259.CrossRefGoogle Scholar
[28]Novikov, S. Ya., ‘Singularities of embedding operators between symmetric function spaces on [0,1]’, Math. Notes 62 (1997), 457468.CrossRefGoogle Scholar
[29]Peirats, V. and Ruiz, C., ‘On lp-copies in Musielak-Orlicz sequence spaces’, Arch. Math. 58 (1992), 164173.CrossRefGoogle Scholar
[30]Räbiger, F., ‘Lower and upper 2-estimates for order bounded sequences and Dunford-Pettis operators between certain classes of Banach lattices’, in: Functional analysis (Austin, TX, 1987/1989), Lect. Notes in Math. 1470 (Springer, Berlin, 1991) pp. 159170.CrossRefGoogle Scholar
[31]Sargent, W. L. C., ‘Some sequence spaces related to the lp spaces’, J. London Math. Soc. 35 (1960), 161171.CrossRefGoogle Scholar
[32]Wnuk, W., ‘l(pn) spaces with the Dunford-Pettis property’, Comment. Math. Prace Mat. 30 (1991), 483489.Google Scholar
[33]Wnuk, W., ‘Banach lattices with properties of the Schur type—a survey’, Confer Sem. Mar. Univ. Bari No. 249 (1993), 25 pages.Google Scholar
[34]Wnuk, W., ‘Banach lattices with the weak Dunford-Pettis property’, Atti Sem. Mat. Fis. Univ. Modena 42 (1994), 227236.Google Scholar
[35]Woo, J., ‘On modular sequence spaces’, Studia Math. 58 (1973), 271289.CrossRefGoogle Scholar
[36]Yamamuro, S., ‘Modulared sequence spaces’, J. Fac. Sci. Hokkaido Univ. Ser. I. 13 (1954), 112.Google Scholar