Article contents
Saddle point theorem and nonlinear scalar Neumann boundary value problems
Published online by Cambridge University Press: 09 April 2009
Abstract
We are concerned with existence results for nonlinear scalar Neumann boundary value problems u″ + g(x, u) = 0, u′(0) = u′(π) = 0 where g(x, u) satisfies Carathéodory conditions and is (possibly) unbounded. On the one hand we only assume that the function (sgn u)g(x, u) is bounded either from above or from below in some function space, and we impose conditions which relate the asymptotic behavior of the function (for¦u¦large) with the first two eigenvalues of the corresponding linear problem (here G(x, u) = is the potential generated by g). On the other hand we consider cases where the function (sgn u)g(x, u) is unbounded. The potential G(x, u) is not necessarily required to satisfy a convexity condition. Our method of proof is variational, we make use of the Saddle Point Theorem.
MSC classification
- Type
- Research Article
- Information
- Journal of the Australian Mathematical Society , Volume 55 , Issue 3 , December 1993 , pp. 386 - 402
- Copyright
- Copyright © Australian Mathematical Society 1993
References
- 1
- Cited by