Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-07T22:11:51.162Z Has data issue: false hasContentIssue false

Rosenthal sets and the Radon-Nikodym property

Published online by Cambridge University Press:  09 April 2009

Patrick N. Dowling
Affiliation:
Miami UniversityOxford, Ohio 45056, U.S.A.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let X be a complex Banach space, G a compact abelian metrizable group and Λ a subset of Ĝ, the dual group of G. If X has the Radon-Nikodym property and is separable then has the Radon-Nikodym property. One consequence of this is that CΛ(G, X) has the Radon-Nikodym property whenever X has the Radon-Nikodym property and the Schur property and Λ is a Rosenthal set. A partial stability property for products of Rosenthal sets is also obtained.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1993

References

[1]Bukhvalov, A. V., ‘Radon-Nikodym property in Banach spaces of measurable vector- valued functions’, Mat. Zametki 26 (1979), 875884.Google Scholar
English translation: Math. Notes 26 (1979), 939944.CrossRefGoogle Scholar
[2]Diestel, J. and Uhl, J. J. Jr, Vector Measures, Math. Surveys Monographs, 15 (Amer. Math. Soc., Providence, 1977).CrossRefGoogle Scholar
[3]Diestel, J. and Uhl, J. J. Jr, ‘Progress in vector measures – 1977–1983’, in: Measure Theory and its Applications, Lecture Notes in Mathematics, 1033 (Springer, Berlin, 1983), pp. 144192.CrossRefGoogle Scholar
[4]Dunford, N. and Schwartz, J. T., Linear operators, Part 1 (Interscience Publishers, New York, 1957).Google Scholar
[5]Lust-Piquard, F., ‘Ensenbies de Rosenthal et ensembles de Riesz’, C. R. Acad. Sci. Paris Sér. I Math. 282 (1976), 833835.Google Scholar
[6]Lust-Piquard, F., ‘L'espace des fonctions presque-periodiques dont le spectre est contenu dans un ensemble compact denombrable á la propriete de Schur’, Colloq. Math. 41 (1979), 273284.CrossRefGoogle Scholar
[7]Lust-Piquard, F., ‘Propriétés geometriques des sous-espaces invariants par translation de L1 (G) et C(G)’, Séminaire sur la geometrie des espaces de Banach, Ecole Polytechnique (19771978), Exposé 26.Google Scholar
[8]Lust-Piquard, F., ‘Propriétés harmoniques et geometriques des sous-espaces invariants par translation de L∞ (G)’, (Ph.D. Thesis, Université Paris-Sud, 1978).Google Scholar