Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T08:05:07.155Z Has data issue: false hasContentIssue false

RINGS ON WATER AND THEIR ENTROPY

Published online by Cambridge University Press:  14 March 2013

MICHEL MENDÈS FRANCE*
Affiliation:
A2X Mathématiques, UMR 5465, Université de Bordeaux 1, 33405 Talence Cedex, France
TADASHI TOKIEDA
Affiliation:
Trinity Hall, Cambridge CB2 1TJ, UK email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We introduce the entropy of a family of planar curves in terms of the number of intersections of the family with a random line, calculate it for key examples, and discuss the entropy of a pattern of rings produced by an impulse on the surface of still water.

Type
Research Article
Copyright
Copyright ©2013 Australian Mathematical Publishing Association Inc.

References

Cauchy, A.-L., ‘Mémoire sur la théorie de la propagation des ondes à la surface d’un fluide pesant d’une profondeur indéfinie’, Mém. Acad. R. Sci. 1 (1827), 3312.Google Scholar
Duez, C., Ybert, C., Clanet, C. and Bocquet, L., ‘Making a splash with water repellency’, Nat. Phys. 3 (2007), 180183.CrossRefGoogle Scholar
Mendès France, M., ‘Chaotic curves’, in: Rhythms in Biology and Other Fields of Application, Lecture Notes in Biomath, 49 (Springer, Berlin, 1983), pp. 352367.Google Scholar
Mendès France, M., ‘Entropie, dimension et thermodynamique des courbes planes’, in: Séminaire de Théorie des Nombres, Paris 1981–82. (Séminaire Delange-Pisot-Poitou) (Birkhäuser, Basel, 1983), pp. 153177.Google Scholar
Mendès France, M., ‘Folding paper and thermodynamics’, Phys. Rep. 103 (1984), 161172.CrossRefGoogle Scholar
Mendès France, M., ‘Chaos implies confusion’, in: Number Theory and Dynamical Systems, LMS Lecture Notes, 134 (eds. Dodson, M. and Vickers, J.) (Cambridge University Press, Cambridge, 1989), pp. 137152.CrossRefGoogle Scholar
Mendès France, M., ‘The Planck constant of a curve’, in: Fractal Geometry and Analysis, (eds. Bélair, J. and Dubuc, S.) (Kluwer Academic Publishers, Dordrecht, 1991), pp. 325366.CrossRefGoogle Scholar
Paterson, A. R., A First Course in Fluid Dynamics (Cambridge University Press, Cambridge, 1983).CrossRefGoogle Scholar
Poisson, S. D., ‘Mémoire sur la théorie des ondes’, Mém. Acad. R. Sci. 1 (1816), 70186.Google Scholar
Santaló, L., Integral Geometry and Geometric Probability, 2nd edn (Cambridge University Press, Cambridge, 2002).Google Scholar
Stokes, G. G., ‘On the numerical calculation of a class of definite integrals and infinite series’, Trans. Camb. Phil. Soc. 9 (1850), 379407.Google Scholar
Thomson, W., ‘On the waves produced by a single impulse in water of any depth, or in a dispersive medium’, Proc. R. Soc. 42 (1887), 8083.Google Scholar