Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T07:47:24.595Z Has data issue: false hasContentIssue false

Riesz sets and the Radon-Nikodym property

Published online by Cambridge University Press:  09 April 2009

Patrick N. Dowling
Affiliation:
Miami UniversityOxford, Ohio 45056, U.S.A.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let X be a complex Banach space, G a compact abelian group and Λ a subset of Ĝ, the dual group pf G. Then LΛ1(G, X) has the Radon-Nikodym property if and only if X has the Radon-Nikodym property and Λ is Riesz set. In particular, H1 (T, X) has the Radon-Nikodym property if and only if X has the Radon-Nikodym property. This solves a problem of Hensgen.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1990

References

[1]Costé, A., ‘Sur les operateurs representables’, C. R. Acad. Sci. Paris 298 (1984), 205208.Google Scholar
[2]Diestel, J. and Uhl, J. J., Vector measures, (Math. Surveys, no. 15, Amer. Math. Soc., Providence, R.I., 1977).CrossRefGoogle Scholar
[3]Dunford, N. and Schwartz, J. T., Linear operators, Part 1, (Interscience Publishers, New York, 1957).Google Scholar
[4]Hensgen, W., ‘Operatoren H1 →X’, Manuscripta Math. 59 (1987), 399422.CrossRefGoogle Scholar
[5]Hensgen, W., Hardy-Räume vektorwertiger funktionen, (Dissertation, Munich, 1986).Google Scholar
[6]Lust-Piquard, F., ‘Ensembles de Rosenthal et ensembles de Riesz’, C. R. Acad. Sci. Paris 282 (1976), A833835.Google Scholar
[7]Rudin, W., Fourier analysis on groups, (Tracts in Mathematics, no. 12, 1962).Google Scholar
[8]Sundaresan, K., ‘The Radon-Nikodym property in Lebesgue-Bochner function spaces’, J. Fund. Anal. 24 (1977), 276279.CrossRefGoogle Scholar
[9]Turett, J. B. and Uhl, J. J., ‘Lρ(μ, X) (1 < ρ < ∞) has the Radon-Nikodym property if X does by martingales’, Proc. Amer. Math. Soc. 61 (1976), 347350.Google Scholar