No CrossRef data available.
Published online by Cambridge University Press: 09 April 2009
The contravariant functor F from the category of Riemann surfaces and analytic mappings to the category of complex algebras and homomorphisms which takes each surface Ω to the algebra of analytic functions on Ω does not have an adjoint on the right; but it nearly does. To each algebra A there is associated a surface Σ1 (A) and a homomorphism A from A into FΣ1 (A), indeed onto an algebra of functions not all of which are constant on any component of Σ1 (A), such that every such non-trivial representation A A → F(Ω) is induced by a unique analytic mapping Ω → Σ1(A)