Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T08:31:44.623Z Has data issue: false hasContentIssue false

Radicals and subdirect decompositions of Ω-groups

Published online by Cambridge University Press:  09 April 2009

R. Mlitz
Affiliation:
Technische Universität WienInstitut fü Angewandte und Numerische A-1040 Wien, Austria
S. Veldsman
Affiliation:
Department of Mathematics, University of Port ElizabethP. O. Box 1600 6000 Port Elizabeth, South Africa
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Starting with a class ℳ of Ω-groups, necessary and sufficient conditions on ℳ are given to ensure that the corresponding Hoehnke radical ρ (determined by the subdirect closure of ℳ as semisimple class) is a radical in the sense of Kurosh and Amitsur; has a hereditary semisimple class; satisfies the ADS-property; has a hereditary radical class or satisfies ρN ∩ I ⊆ ρI and lastly, have both a hereditary radical and semisimple class or satisfies ρN ∩ I = ρI.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1990

References

[1]Anderson, T., Kaarli, K., and Wiegandt, R., ‘Radicals and subdirect decompositions,’ Comm. Algebra 13 (1985), 479494.CrossRefGoogle Scholar
[2]Andrunakievič, V. A., ‘Radicals of associative rings, I,’ Mat Sb. 44 (1958), 179212 (in Russian; English transl. in Amer. Math. Soc. Transl. 52 (1966), 95–128).Google Scholar
[3]Buys, A., ‘Radicals of Ω-groups’, Contributions to general algebra 4, pp. 2335 (Hölder-Pichler-Tempsky, B. G. Teubner, Wien, Stuttgart, 1987).Google Scholar
[4]Divinsky, N., Rings and radicals, (Allen and Unwin, London, 1965).Google Scholar
[5]Heyman, G. A. P. and Roos, C., ‘Essential extensions in radical theory for rings’, J. Austral. Math. Soc. 23 (1977), 340347.CrossRefGoogle Scholar
[6]Hoehnke, H. J., ‘Radikale in allgemeinen Algebren’, Math. Nachr. 32 (1966), 347383.CrossRefGoogle Scholar
[7]Kaarli, K., ‘Classification of irreducible R-groups over a semi-primary near-ring’, Tartu Riikl Al. Toimetised 556 (1981), 4763 (in Russian).Google Scholar
[8]Krempa, J., ‘Lower radical properties for alternative rings’, Bull. Acad. Polon. Sci. Sér. Sci. Math. 23 (1975), 139142.Google Scholar
[9]Leavitt, W. G., ‘A minimally embeddable ring’, Period. Math. Hungar. 12 (1981), 129140.CrossRefGoogle Scholar
[10]Leavitt, W. G., ‘Hereditary upper radicals’, Studia Sci. Math. Hungar. 16 (1981), 1523.Google Scholar
[11]Leavitt, W. G., ‘Upper radicals of regular classes’, Ada Math. Acad. Sci. Hungar. 42 (1983), 213220.CrossRefGoogle Scholar
[12]Leavilt, W. G., (Private communication).Google Scholar
[13]Leavitt, W. G. and Armendariz, E. P., ‘Non-hereditary semisimple classes’, Proc. Amer. Math. Soc. 18 (1967), 11141117.CrossRefGoogle Scholar
[14]Leavitt, W. G. and Van Leeuwen, L. C. A, ‘Hereditariness of upper radical’, Contributions to general algebra 4, 7984 (Hölder-Pichler-Tempsky, B. G. Teubner, Wien, Stuttgart, 1987).Google Scholar
[15]Mlitz, R., ‘Radicals and semisimple classes of Ω2-groups’, Proc. Edinburgh Math. Soc. 23 (1980), 3741.CrossRefGoogle Scholar
[16]Mlitz, R. and Oswald, A., ‘Hypersolvable and supernilpotent radicals of near-rings’, Studia Math., to appear.Google Scholar
[17]Rashid, M. A. and Weigandt, R., ‘The hereditariness of the upper radical’, Acta Math. Acad. Sci. Hungar. 24 (1973), 343347.CrossRefGoogle Scholar
[18]Rjabuhin, Ju M., ‘Radicals in Ω-groups, II, Ideal-hereditary radicals’, Mat. Issled. 3 vyp 4 (10) (1968), 108135 (in Russian).Google Scholar
[19]Rjabuhin, Ju M., On supernilpotent and special radicals, Issled Alg. i Mat. Anal. 6572, Akad. Nauk Moldov. SSR, Kishinew, 1965 (in Russian).Google Scholar
[20]Rjabuhin, Ju M., ‘Lower radicals of rings’, Mat. Zametki 2 (1967), 239244 (in Russian).Google Scholar
[21]Tangeman, R. L. and Kreiling, D., ‘Lower radicals in non-associative rings’, J. Austral. Math. Soc. 24 (1972), 419423.CrossRefGoogle Scholar
[22]Veldsman, S., ‘Supernilpotent radicals of near-rings’, Comm. Algebra 15 (1987), 24972509.CrossRefGoogle Scholar
[23]Weigandt, R., Radica and semisimple classes of rings, (Queen's papers in pure and applied math., no. 37, Kingston, Ontario, 1974).Google Scholar