Published online by Cambridge University Press: 09 April 2009
The quotient bounded and the universally bounded elements in a calibrated locally convex algebra are defined and studied. In the case of a generalized B*-algebra A, they are shown to form respectively b* and B*-algebras, both dense in A. An internal spatial characterization of generalized B*-algebras is obtained. The concepts are illustrated with the help of examples of algebras of measurable functions and of continuous linear operators on a locally convex space.