Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-19T11:56:40.786Z Has data issue: false hasContentIssue false

Quasi-injective modules satisfying certain realtive finiteness conditions

Published online by Cambridge University Press:  09 April 2009

Tatsuo Izawa
Affiliation:
Department of MathematicsShizuoka UniversityOhya 836, Shizuoka 422Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the endomorphism ring of a quasi-injective right R-module Q such that R satisfies certain finiteness conditions relative to Q. And we are concerned with a module sHomR(M, Q), where S is the endomorphism ring of QR.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1988

References

[1]Albu, T. and Năstăsescu, C., ‘Décompositions primaires dans les catégories de Grothendieck commutatives I’, Reine Angew. Math. 280 (1976), 172194.Google Scholar
[2]Albu, T. and Năstăsescu, C., Relative finiteness in module theory (Marcel Dekker Inc., 1984).Google Scholar
[3]Faith, C., Algebra II: Ring theory (Springer-Verlag, 1975).Google Scholar
[4]Faith, C., Injective modules and injective quotient rings (Marcel Dekker Inc., 1982).Google Scholar
[5]Izawa, T., ‘Maximal quotient rings of endomorphism rings of E(RR)-torsionfree generators’, Canad. J. Math. 33 (1981), 585605.CrossRefGoogle Scholar
[6]Izawa, T., ‘Composition series ralative to a module’, J. Pute Appl. Algenra 35 (1985), 1533.CrossRefGoogle Scholar
[7]Miller, R. W. and Teply, M. L., ‘The descending chain condition relative to a torsion theory’, Pacific J. Math. 83 (1979), 207220.CrossRefGoogle Scholar
[8]Năstăsescu, C., ‘La structure des modules par rapport à une topologie additive’, Tôhoku Math. J. 26 (1974), 173201.CrossRefGoogle Scholar
[9]Năstăsescu, C., ‘Conditions de finitude les modules’, Rev. Roumaine Math. Pures Appl. 24 (1979), 745758.Google Scholar
[10]Năstăsescu, C., ‘Conditions de finitude pour les modules II’, Rev. Roumaine Math. Pures Appl. 25 (1980), 615630.Google Scholar
[11]Năstăsescu, C. and Niţă, C., ‘Objets noethérian par rapport à une sous-catégorie èpaisse d'une catégorie abélienne’, Rev. Roumaine Math. Pures Appl. 9 (1965), 14591468.Google Scholar
[12]Beachy, J. A., ‘On quasi-artinian rings’, J. London Math. Soc. (2) 3 (1971), 449452.CrossRefGoogle Scholar
[13]Vámos, P., ‘The dual of the notion of ‘finitely generated”’, J. London Math. Soc. 43 (1968), 643646.CrossRefGoogle Scholar