No CrossRef data available.
Article contents
Quasi-injective modules satisfying certain realtive finiteness conditions
Published online by Cambridge University Press: 09 April 2009
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We study the endomorphism ring of a quasi-injective right R-module Q such that R satisfies certain finiteness conditions relative to Q. And we are concerned with a module sHomR(M, Q), where S is the endomorphism ring of QR.
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 1988
References
[1]Albu, T. and Năstăsescu, C., ‘Décompositions primaires dans les catégories de Grothendieck commutatives I’, Reine Angew. Math. 280 (1976), 172–194.Google Scholar
[2]Albu, T. and Năstăsescu, C., Relative finiteness in module theory (Marcel Dekker Inc., 1984).Google Scholar
[4]Faith, C., Injective modules and injective quotient rings (Marcel Dekker Inc., 1982).Google Scholar
[5]Izawa, T., ‘Maximal quotient rings of endomorphism rings of E(RR)-torsionfree generators’, Canad. J. Math. 33 (1981), 585–605.CrossRefGoogle Scholar
[6]Izawa, T., ‘Composition series ralative to a module’, J. Pute Appl. Algenra 35 (1985), 15–33.CrossRefGoogle Scholar
[7]Miller, R. W. and Teply, M. L., ‘The descending chain condition relative to a torsion theory’, Pacific J. Math. 83 (1979), 207–220.CrossRefGoogle Scholar
[8]Năstăsescu, C., ‘La structure des modules par rapport à une topologie additive’, Tôhoku Math. J. 26 (1974), 173–201.CrossRefGoogle Scholar
[9]Năstăsescu, C., ‘Conditions de finitude les modules’, Rev. Roumaine Math. Pures Appl. 24 (1979), 745–758.Google Scholar
[10]Năstăsescu, C., ‘Conditions de finitude pour les modules II’, Rev. Roumaine Math. Pures Appl. 25 (1980), 615–630.Google Scholar
[11]Năstăsescu, C. and Niţă, C., ‘Objets noethérian par rapport à une sous-catégorie èpaisse d'une catégorie abélienne’, Rev. Roumaine Math. Pures Appl. 9 (1965), 1459–1468.Google Scholar
[12]Beachy, J. A., ‘On quasi-artinian rings’, J. London Math. Soc. (2) 3 (1971), 449–452.CrossRefGoogle Scholar
[13]Vámos, P., ‘The dual of the notion of ‘finitely generated”’, J. London Math. Soc. 43 (1968), 643–646.CrossRefGoogle Scholar
You have
Access