Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-01T02:07:08.205Z Has data issue: false hasContentIssue false

Pseudo-elliptic integrals, units, and torsion

Published online by Cambridge University Press:  09 April 2009

Francesco Pappalardi
Affiliation:
Dipartimento di Matematica, Università degli Studi Roma Tre, L.go San Lenardo Murialdo, 1, I-00146 Roma, Italy, e-mail: [email protected]
Alfred J. Van Der Poorten
Affiliation:
Centre for Number Theory Research, 1 Bimbil Place, Killara, Sydney NSW 2071, Australia, e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We remark on pseudo-elliptic integrals and on exceptional function fields, namely function fields defined over an infinite base field but nonetheless containing non-trivial units. Our emphasis is on some elementary criteria that must be satisfied by a squarefree polynomial D(x) whose square root generates a quadratic function field with non-trivial unit. We detail the genus I case.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2005

References

[1]Adams, W. W. and Razar, M. J., ‘Multiples of points on elliptic curves and continued fractions’, Proc. London Math. Soc. 41 (1980), 481498.CrossRefGoogle Scholar
[2]Avanzi, R. M. and Zannier, U. M., ‘Genus one curves defined by separated variable polynomials and a polynomial pell equation’, Acta Arith. 99 (2001), 227256.CrossRefGoogle Scholar
[3]Berry, T. G., ‘On periodicity of continued fractions in hyperelliptic function fields’, Arch. Math. 55 (1990), 259266.CrossRefGoogle Scholar
[4]Bombieri, E. and Cohen, P. B., ‘Siegel's lemma, Padé approximations and Jacobians’, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), 155178.Google Scholar
[5]Cantor, D. G., ‘Computing in the Jacobian of a hyperelliptic curve’, Math. Comp. 48 (1987), 95101.CrossRefGoogle Scholar
[6]Cremona, J. E., Algorithms for modular elliptic curves (Cambridge Univ. Press, 1997). Available on-line at http://www.maths.nott.ac.uk/personal/jec/book/amec.htmlGoogle Scholar
[7]Friesen, C., ‘Continued fraction characterization and generic ideals’, in: The arithmetic of function fields (Columbus, OH, 1991) (eds. Goss, D., Hayes, D. R. and Rosen, M. I.), Ohio State Univ. Math. Res. Inst. Publ. 2 (Walter de Gruyter, Berlin, 1992) pp. 465474.Google Scholar
[8]Goss, D., Hayes, D. R. and Rosen, M. I. (eds.), The arithmetic of function fields (Columbus, OH, 1991), Ohio State Univ. Math. Res. Inst. Publ. 2 (Walter de Gruyter, Berlin, 1992).Google Scholar
[9]Hardy, I., Hellegouarch, Y. and Paysant-Le-Roux, R., ‘Fractions continues normals dans un corps de fonctions hyperelliptiques’, Acta Arith. 101 (2002), 1937.CrossRefGoogle Scholar
[10]Healy, A. D., ‘Resultants, resolvents, and computation of Galois groups’, available on-line at http://www.alexhealy.net/papers/math250a.pdf.Google Scholar
[11]Lauter, K. E., ‘The equivalence of the geometric and algebraic group laws for jacobians of genus 2 curves’, in: Proceedings of the conferences in memory of Ruth Michler, AMS Contemp. Math. Series (Amer. Math. Soc., Providence, RI, to appear).Google Scholar
[13]Mazur, B., ‘Modular curves and the Eisenstein ideal’, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 33186.CrossRefGoogle Scholar
[15]Schmidt, W. M., ‘On continued fractions and diophantine approximation in power series fields’, Acta Arith. 9 (2000), 139166.CrossRefGoogle Scholar
[16]Street, E., ‘Pell's equation and Laurent fields’, manuscript, 2003.Google Scholar
[17]van der Poorten, A. J., ‘Non-periodic continued fractions in hyperelliptic function fields’, Bull. Austral. Math. Soc. 64 (2001), 331343.CrossRefGoogle Scholar
[18]van der Poorten, A. J., ‘Periodic continued fractions and elliptic curves’, in: High primes and misdemeanours: lectures in honour of the 60th birthday of Hugh Cowie Williams (eds. van der Poorten, A. and Stein, A.), Fields Institute Communications Series (Amer. Math. Soc., Providence, RI, 2004) pp. 353365.Google Scholar
[19]van der Poorten, A. J. and Tran, X. C., ‘Quasi-elliptic integrals and periodic continued fractions’, Monatshefte Math. 131 (2000), 155169.CrossRefGoogle Scholar
[20]van der Poorten, A. J. and Tran, X. C., ‘Periodic continued fractions in elliptic function fields’, in: Algorithmic number theory (Proc. Fifth International Symposium, ANTS-V, Sydney, NSW, Australia July 2002) (eds. Fieker, C. and Kohel, D. R.), Lecture Notes in Comput. Sci. 2369 (Springer, Berlin, 2002) pp. 390404.CrossRefGoogle Scholar