Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T12:13:38.191Z Has data issue: false hasContentIssue false

Posner's second theorem, multilinear polynomials and vanishing derivations

Published online by Cambridge University Press:  09 April 2009

Vincenzo De Filippis
Affiliation:
Dipartimento di Matematica, Università di Messina, Salita Sperone 31, 98166 Messina, Italia e-mail: [email protected]
Onofrio Mario Di Vincenzo
Affiliation:
Dipartimento di Matematica, Universitá di Bari, Via Orabona 4, 70125 Bari, Italia e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let K be a commutative ring with unity, R a prime K-algebra of characteristic different from 2, d and δ non-zero derivations of R, f (x1,…, xn) a multilinear polynomial over K.If

then f(x1,…,xnis central-valued on R.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2004

References

[1]Beidar, K. I., ‘Rings with generalized identities’, Moscow Univ. Math. Bull. 33 (1978), 5358.Google Scholar
[2]Beidar, K. I., III, W. S. Martindale and Mikhalev, V., Rings with generalized identities, Monographs and Textbooks in Pure and Applied Math. 196 (Dekker, New York, 1996).Google Scholar
[3]Bergen, J., Herstein, I. N. and Kerr, J. W., ‘Lie ideals and derivations of prime rings’, J. Algebra 71 (1981), 259267.Google Scholar
[4]Brešar, M. and Vukman, J., ‘On certain subrings of prime rings with derivations’, J. Austral. Math. Soc. Ser. A 54 (1993), 133141.CrossRefGoogle Scholar
[5]Chuang, C. L., ‘The additive subgroup generated by a polynomial’, Israel J. Math. 59 (1987), 98106.CrossRefGoogle Scholar
[6]De Filippis, V. and Vincenzo, O. M. Di, ‘Derivations on multilinear polynomials in semiprime rings’, Comm. Algebra 27 (1999), 59755983.Google Scholar
[7]De Filippis, V. and Vincenzo, O. M. Di, ‘Posner's second theorem and an annihilator condition’, Math. Pannonica 12 (2001), 6981.Google Scholar
[8]Erickson, T. S., Martindale, W. S. III and Osborn, J. M., ‘Prime nonassociative algebras’, Pacific J. Math. 60 (1975), 4963.CrossRefGoogle Scholar
[9]Jacobson, N., Structure of rings (Amer. Math. Soc., Providence, RI, 1964).Google Scholar
[10]Kharchenko, V. K., ‘Differential identities of prime rings’, Algebra and Logic 17 (1978), 155168.Google Scholar
[11]Lansky, C., ‘An Engel condition with derivation’, Proc. Amer. Math. Soc. 118 (1993), 731734.Google Scholar
[12]Lee, P. H. and Lee, T. K., ‘Derivations with Engel conditions on multilinear polynomials’, Proc. Amer. Math. Soc. 124 (1996), 26252629.Google Scholar
[13]Lee, T. K., ‘Semiprime rings with differential identities’, Bull. Inst. Acad. Sinica 20 (1992), 2738.Google Scholar
[14]Lee, T. K., ‘Derivations with invertible values on a multilinear polynomials’, Proc. Amer. Math. Soc. 119 (1993), 10771083.Google Scholar
[15]Leron, U., ‘Nil and power central valued polynomials in rings’, Trans. Amer. Math. Soc. 202 (1975), 97103.Google Scholar
[16]Martindale, W. S. III, ‘Prime rings satisfying a generalized polynomial identity’, J. Algebra 12 (1969), 576584.CrossRefGoogle Scholar
[17]Posner, E. C., ‘Derivations in prime rings’, Proc. Amer. Math. Soc. 8 (1975), 10931100.Google Scholar
[18]Wong, T. L., ‘Derivations with power-central values on multilinear polynomials’, Algebra Colloquium 3 (1996), 369378.Google Scholar