Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T08:33:51.947Z Has data issue: false hasContentIssue false

Permutable power series and regular iteration

Published online by Cambridge University Press:  09 April 2009

I. N. Baker
Affiliation:
Imperial College of Science and Technology, London
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

If f(z) is a power series convergent for |z| < ρ, where ρ > 0, then f(z) is said to have a fixpoint of multiplir a1 at z = 0. In the (local) iteration of f(z) one studies the sequence {fn(z)}, n = 0, 1, 2, … in a neighbourhood of z = 0, fn(z) benig defined by For many values of the multiplier a1, including 0 < |a1| < 1 and |a1| > 1, the local iteration of f(z) is completely mastered by the introduction of Schröder's functional equation.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1962

References

[1]Baker, I. N., Zusammensetzungen ganzer Funktionen. Math. Z, 69, 121163 (1958).Google Scholar
[2]Baker, I. N., The existence of fixpoints of entire functions. Math. Z. 73, 280284 (1960).CrossRefGoogle Scholar
[3]Bieberbach, L., Theorie der gewöhnlichen Differentialgleichungen. Berlin: Spring, 1953.CrossRefGoogle Scholar
[4]Cremer, H., Über die Häufigkeit der Nichtzentren. Math. Ann. 115, 573580 (1938).CrossRefGoogle Scholar
[5]Fatou, P., Sur les équations fonctionelles. Bull. Soc. Math. France 47, 161271 (1919); 48, 33–94, 208–314 (1920).CrossRefGoogle Scholar
[6]Fatou, P., Sur l'itération des fonctions transcendantes entières. Acta Math. 47, 337370 (1926).CrossRefGoogle Scholar
[7]Hadamard, J., Two works on iteration and related questions. Bull. Amer. Math. Soc. 50, 6775 (1944).CrossRefGoogle Scholar
[8]Ganapathy, Iyer V., On permutable integral functions. J. Lond. Math. Soc. 34, 141144 (1959).CrossRefGoogle Scholar
[9]Jacobsthal, E., Über vertauschbare Polynome. Math. Z. 63, 243276 (1955).CrossRefGoogle Scholar
[10]Julia, G., Mémoire sur la permutabilité des fractions rationelles. Annales sci. de l'École Normale Superieure (3) 39, 131215 (1922).Google Scholar
[11]Koenigs, G., Recherches sur les intégrales de certaines équations fonctionelles. Annales sci. de l'École Normale Supérieure (3), Suppl., (1884), 341.CrossRefGoogle Scholar
[12]Ritt, J. F., Prime and composite polynomials. Trans. Amer. Math. Soc. 23, 5166 (1922).CrossRefGoogle Scholar
[13]Rosenbloom, P., The fix-points of entire functions. Medd. Lunds Univ. mat. Sem., suppl. Bd. M. Riesz 186192 (1952).Google Scholar
[14]Siegel, C. L., Iteration of analytic functions. Annals Math. 43, 607616 (1942).CrossRefGoogle Scholar
[15]Szekeres, G., Regular iteration of real and complex functions. Acta Math. 100, 203258 (1958).Google Scholar