Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T12:18:00.352Z Has data issue: false hasContentIssue false

The order-dual of a TRL group, I

Published online by Cambridge University Press:  09 April 2009

J. B. Miller
Affiliation:
Monash University Melbourne, Victoria 3168
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Conditions are found for several intrinsically defined partial orders on b, the vector space of order-bounded additive functionals on a commutative pogroup, to have Riesz interpolation properties, and to make b a TRL group.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1978

References

REFERENCES

Birkhoff, G. (1976), Lattice theory (Amer. Math. Soc., Providence, 3rd ed.).Google Scholar
Bonsall, F. F. (1954), “Sublinear functionals and ideals in partially ordered vector spaces”, Proc. London Math. Soc. (3) 4, 402417.CrossRefGoogle Scholar
Cameron, N. and Miller, J. B. (1975), ‘Topology and axioms of interpolation in partially ordered spaces”, J. für die reine und angewandte Math. 278/279, 113.Google Scholar
Hayes, A. (1962), “Additive functionals on groups”, Proc. Camb. Phil. Soc. 58, 196205.CrossRefGoogle Scholar
Jaffard, P. (1953), “Contribution à l'étude des groupes ordonnés”, J. des Math. Pures et Appl. 32, 203280.Google Scholar
Loy, R. J. and Miller, J. B. (1972), “Tight Riesz groups”, J. Austral. Math. Soc. 13, 224240.CrossRefGoogle Scholar
Miller, J. B. (1976), “Subdirect representation of tight Riesz groups by hybrid products”, J. für die reine und angewandte Math. 283/284, 110124.Google Scholar
Peressini, A. (1967), Ordered topological vector spaces (Harper and Row, New York).Google Scholar
Redfield, R. H. (1976), “Non-secular, locally compact TRL groups” (Analysis Paper 18, Monash University, Melbourne).Google Scholar
Wirth, A. (1975), “Locally compact tight Riesz groups”, J. Austral. Math. Soc. 19, 247251.Google Scholar