Published online by Cambridge University Press: 09 April 2009
It is shown that if every nilpotent 2 × 2 matrix over a ring has nilpotent transpose, then the commutator ideal must be contained in the Jacobson radical, thus generalizing a result of R. S. Gupta, who considered the division ring case. Moreover, if the nilpotent elements form an ideal or if the ring satisfies a polynomial identity, then the above property of the transpose implies that in fact the commutator ideal must be nil.