Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T07:45:35.007Z Has data issue: false hasContentIssue false

On transcendental meromorphic functions which are geometrically finite

Published online by Cambridge University Press:  09 April 2009

Jian-Hua Zheng
Affiliation:
Department of Mathematical Sciences, Tsinghua University, Beijing 100084, P. R. China e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we give the definition of a meromorphic function which is geometrically finite and investigate some properties of geometrically finite meromorphic functions and the Lebesgue measure of their Julia sets.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2002

References

[1]Baker, I. N., Kotus, J. and Lu, Y., ‘Iterates of meromorphic functions I’, Ergodic Theory Dynam. Systems 11 (1991), 241248.CrossRefGoogle Scholar
[2]Beardon, A. F. and Pommerenke, Ch., ‘The Poincaré metric of plane domains’, J. London Math. Soc. (2) 18 (1978), 475483.CrossRefGoogle Scholar
[3]Bergweiler, W., ‘Iteration of meromorphic functions’, Bull. Amer. Math. Soc. (New Series) 29 (1993), 151188.CrossRefGoogle Scholar
[4]Devaney, R. L. and Keen, L., ‘Dynamics of meromorphic maps with polynomial Schwarzian derivative’, Ann. Sci. Ecole Norm. Sup. 22 (1989), 5581.CrossRefGoogle Scholar
[5]Dominguez, P., ‘Dynamics of transcendental meromorphic functions’, Ann. Acad. Sci. Fenn. Ser A. I. Math. 23 (1998), 225250.Google Scholar
[6]Eremenko, A. E., ‘On the iteration of entire functions’, in: Dynamical systems and ergodic theory (Warsaw, 1986) Banach Center Publ. 23 (PWN, Warsaw, 1989) pp. 339345.Google Scholar
[7]Eremenko, A. E. and Lyubich, M. Yu., ‘Dynamical properties of some classes of entire functions’, Ann. Inst. Fourier 42 (1992), 9891020.CrossRefGoogle Scholar
[8]Jankowski, M., ‘Newton's method for solutions of quasi-Bassel differential equations’, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 22 (1997), 187204.Google Scholar
[9]Lyubich, M. Yu., ‘The dynamics of rational transforms: the topological picture’, Russian Math. Surveys 41 (1986), 43117.CrossRefGoogle Scholar
[10]Lyubich, M. Yu., ‘An analysis of the stability of the dynamics of rational functions’, Selecta Math. Soviet. 9 (1990), 6990.Google Scholar
[11]Marco, R. Perez, ‘Sur une question de Dulac et Fatou’, C. R. Acad. Sci., Paris, Ser. I 321 (1995), 10451048.Google Scholar
[12]McMullen, C., ‘Area and Hausdorff dimension of Julia sets of entire functions’, Trans. Amer. Math. Soc. 300 (1987), 329342.CrossRefGoogle Scholar
[13]Misiurewicz, M., ‘On iterates of ez’, Ergodic Theory Dynam. Systems 1 (1981), 103106.CrossRefGoogle Scholar
[14]Rippon, P. J. and Stallard, G. M., ‘Iteration of a class of hyperbolic meromorphic functions’, Proc. Amer. Math. Soc. 207 (1999), 32513258.CrossRefGoogle Scholar
[15]Stallard, G. M., ‘Entire functions with Julia sets of zero measure’, Math. Proc. Cambridge Philos. Soc. 108 (1990), 551557.CrossRefGoogle Scholar
[16]Steinmetz, N., Rational iteration (Walter de Gruyter, Berlin, 1993).CrossRefGoogle Scholar
[17]Zheng, J. H., ‘Singularities and limit functions in iteration of meromorphic functions’, preprint, Tsinghua University.Google Scholar
[18]Zheng, J. H., ‘Singularities and wandering domains in iteration of meromorphic functions’, Illinois J. Math. 44 (2000), 520530.CrossRefGoogle Scholar
[19]Zheng, J. H., ‘Uniformly perfect sets and distortion of holomorphic functions’, Nagoya Math. J., to appear.Google Scholar