Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-29T10:58:18.587Z Has data issue: false hasContentIssue false

On Topological Algebra Bundles

Published online by Cambridge University Press:  09 April 2009

Athanasios Kyriazia
Affiliation:
Mathematical InstituteUniversity of Athens57, Solonos Street GR-106 79 Athens, Greece
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Topological algebra bundles whose fibre (-algebras) admit functional representations constitute a category, antiequivalent with that of (topological) fibre bundles having completely regular bundle spaces and locally compact fibres.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1987

References

[1]Atiyah, M. F., K-Theory (Benjamin, New York, 1967).Google Scholar
[2]Bourbaki, N., General Topology I (Hermann, Paris, 1966).Google Scholar
[3]Bourbaki, N., General Topology II (Hermann, Paris, 1966).Google Scholar
[4]Dugundji, J., Topology (Allyn and Bacon, Boston, Mass., 1970).Google Scholar
[5]Gelbaum, B. R., ‘Banach algebra bundles’, Pacific J. Math. 28 (1969), 337349.Google Scholar
[6]Galbaum, B. R. and Kyriazis, A., ‘Fibre tensor product bundles’, Proc. Amer. Math. Soc. 93 (1985), 675680.Google Scholar
[7]Karoubi, M., K-Theory (Springer-Verlag, Berlin, 1978).Google Scholar
[8]Kyriazis, A., ‘On the spectra of topological -tensor product -algebras’, Yokohama Math. J. 31 (1983), 4765.Google Scholar
[9]Mallios, A., Topological Algebras: Selected Topics (North-Holland, Amsterdam, 1986).Google Scholar
[10]Mallios, A., ‘On functional representations of topological algebras’, J. Fund. Anal. 6 (1970), 468480.Google Scholar
[11]Mallios, A., ‘Vector bundles and k-theory over topological algebras’, J. Math. Anal. Appl. 92 (1983), 452506.CrossRefGoogle Scholar
[12]Mallios, A., ‘Continuous vector bundles over topological algebras’, J. Math. Anal. Appl. 113 (1986), 245254.CrossRefGoogle Scholar