Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-12-01T04:47:40.106Z Has data issue: false hasContentIssue false

On the relationship between ordinary thin sets and full-thin sets

Published online by Cambridge University Press:  09 April 2009

J. S. Hwang
Affiliation:
Department of Mathematics McMaster UniversityHamilton, Ontario, Canada
H. L. Jackson
Affiliation:
Centre de Recherches Mathématiques Université de MontréalMontréal, QuébecCanada also Department of Pure Mathematics Australian National UniversityCanberra, A.C.T. 2600, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this work we demonstrate that if Ω ⊂ Rn (n ≧ 3) is either a half space or a unit ball, and if E ⊂ ω then E is an ordinary thin set at a boundary point of Ω (including the point at infinity if Ω is a half space) if and only if it is a full-thin set at the corresponding Kuramochi boundary point of Ω. The case for n = 2 has already been considered in an earlier work.

1980 Mathematics subject classification (Amer. Math. Soc.): 31 B 05.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1980

References

Brelot, M. (1944), ‘Sur le role du point à l'infini dans la théorie des fonctions harmoniques’, Ann. Sci. École Norm. Sup. 61, 301332.CrossRefGoogle Scholar
Brelot, M. (1953), ‘Etude et extensions du principe de Dirichlet’, Ann. Inst. Fourier (Grenoble) 5, 371419.CrossRefGoogle Scholar
Brelot, M. (1971), On topologies and boundaries in potential theory (Lecture Notes in Mathematics 175, Springer-Verlag, Berlin and New York).CrossRefGoogle Scholar
Constantinescu, C. and Cornea, A. (1963), Ideale Ränder Riemannscher Flächen (Springer-Verlag) (Ergeb. Math. Bd. 32), Berlin.CrossRefGoogle Scholar
Helms, L. L. (1969), Introduction to potential theory (Wiley-Interscience, New York).Google Scholar
Hwang, J. S. and Jackson, H. L. (1978), ‘Some results on Kuramochi thin sets’, An. Acad. Brasil. Ci. 50 (4), 441445.Google Scholar
Kellogg, O. D. (1929), Foundations of modern potential theory (Springer, Berlin).CrossRefGoogle Scholar
Landkof, N. S. (1972), Foundations of modern potential theory (Springer-Verlag (Grund. Math. Bd. 180), Berlin, New York).CrossRefGoogle Scholar
Maeda, F. Y. (1964), ‘Notes on Green lines and Kuramochi boundary of a Green space’, J.Sci. Hiroshima Univ. Ser. A-1 28, 5966.Google Scholar
Maeda, F. Y. (1966), ‘Axiomatic treatment of full-superharmonic functions’, J.Sci. Hiroshima Univ. Ser. A-1 30, 197215.Google Scholar
Maeda, F. Y., Ohtsuka, M. et al. (1968), Kuramochi boundaries of Riemann surfaces (Lecture Notes in Mathematics 58, Springer-Verlag, Berlin and New York).CrossRefGoogle Scholar
Ohtsuka, M. (1964), ‘An elementary introduction of Kuramochi boundary’, J.Sci. Hiroshima Univ. Ser. A-1 28, 271299.Google Scholar