Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T08:52:58.775Z Has data issue: false hasContentIssue false

On the pseudorandomness of the signs of Kloosterman sums

Published online by Cambridge University Press:  09 April 2009

Étienne Fouvry
Affiliation:
Mathématique, Bâtiment 425, Campus d'Orsay, Université Paris-Sud, 91405 Orsay Cedex, France e-mail: [email protected]
Philippe Michel
Affiliation:
Mathématiques, Université Montpellier II, CC 052, 34095 Montpellier Cedex, France e-mail: [email protected]
Joël Rivat
Affiliation:
Institut de Mathématiques de Luminy, CNRS-UMR 6206, Université de la Méditerranée, 163 avenue de Luminy, Case 907, 13288 Marseille Cedex 9, France e-mail: [email protected]
András Sárközy
Affiliation:
Eötvös Loránd University, Department of Algebra, and Number Theory, H-1117 Budapest, Pázmány Péter sétány 1/c, Hungary e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we study the pseudorandom properties of the signs of Kloosterman sums.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2004

References

[1]Cassaigne, J., Mauduit, C. and Sárközy, A., ‘On finite pseudorandom binary sequences VII: The measures of pseudorandomness’, Acta Arith. 103 (2002), 97118.CrossRefGoogle Scholar
[2]Duke, W., Friedlander, J. and Iwaniec, H., ‘Bilinear forms with Kloosterman fractions’, Invent. Math. 128 (1997), 2343.CrossRefGoogle Scholar
[3]Fouvry, E., Iwaniec, H. and Katz, N., ‘The divisor function over arithmetic progressions’, Acta Arith. 61 (1992), 271287.CrossRefGoogle Scholar
[4]Fouvry, E. and Michel, P., ‘Sommes de modules de sommes d'exponentielles’, Pacific J. Math. 209 (2003), 261288.CrossRefGoogle Scholar
[5]Graham, S. W. and Kolesnik, G., Van der Corput's method of exponential sums, London Math. Soc. Lecture Note Ser. 126 (Cambridge University Press, 1991).CrossRefGoogle Scholar
[6]Katz, N. M., Sommes exponentielles, Astérisque 79 (Société Mathématique de France, Paris, 1980).Google Scholar
[7]Katz, N. M., Gauss sums, Kloosterman sums and monodromy groups, Ann. of Math. Stud. 116 (Princeton University Press, Princeton, 1988).CrossRefGoogle Scholar
[8]Mauduit, C. and Sárközy, A., ‘On finite pseudorandom binary sequences I: Measure of pseudorandomness, the Legendre symbol’, Acta Arith. 82 (1997), 365377.CrossRefGoogle Scholar
[9]Michel, P., ‘Autour de la conjecture de Sato-Tate pour les sommes de Kloosterman’, Invent. Math. 121 (1995), 6178.CrossRefGoogle Scholar
[10]Michel, P., ‘Autour de la conjecture de Sato-Tate pour les sommes de Kloosterman, II’, Duke Math. J. 92 (1998), 221254.CrossRefGoogle Scholar
[11]Michel, P., ‘Minorations de sommes d'exponentielles’, Duke Math. J. 95 (1998), 227240.CrossRefGoogle Scholar
[12]Montgomery, H. L., Ten lectures on the interface between analytic number theory and harmonic analysis, CBMS Regional Conference Series in Math. 84 (American Mathematical Society, Providence, 1994).CrossRefGoogle Scholar
[13]Vaaler, J., ‘Some extremal functions in Fourier analysis’, Bull. Amer. Math. Soc. 12 (1985), 183216.CrossRefGoogle Scholar
[14]Vinogradov, I. M., Elements of number theory (Dover, 1954).Google Scholar