Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T09:11:55.675Z Has data issue: false hasContentIssue false

On the logarithmic coefficients of close-to-convex functions

Published online by Cambridge University Press:  09 April 2009

M. M. Elhosh
Affiliation:
Department of MathematicsThe University College of WalesAberystwythDyfed, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Logarithmic coefficient bounds for some univalent functions are given in this paper.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1996

References

[1]Anderson, J., Barth, K. and Brannan, D., ‘Research problems in complex analysis’, Bull. London Math. Soc. 9 (1977), 129162.Google Scholar
[2]de Branges, L., ‘A proof of the Bieberbach Conjecture’, Acta Math. 154 (1985), 137152.Google Scholar
[3]Brannan, D. and Clunie, J., Aspects of contemporary complex analysis (Academic Press, 1980).Google Scholar
[4]Brickman, L., Hallenbeck, D. and MacGregor, T., ‘Convex hulls and extreme points of families of starlike and convex mappings’, Trans. Amer. Math. Soc. 185 (1973), 413428.Google Scholar
[5]Duren, P., ‘Coefficients of univalent functions’, Bull. Amer. Math. Soc. (5) 83 (1977), 891911.CrossRefGoogle Scholar
[6]Duren, P., Univalent functions (Springer, New York, 1983).Google Scholar
[7]Duren, P. and Leung, Y., ‘Logarithmic coefficients of univalent functions’, J. Analyse Math. 36 (1979), 3643.CrossRefGoogle Scholar
[8]Elhosh, M. M., ‘On the logarithmic coefficients of close-to-convex functions’, Math. Japon. (2) 31 (1986), 201204.Google Scholar
[9]Elhosh, M. M., ‘On mean p-valent functions’, Rev. Roumanie Math. Pures Appl. 34 (1989), 1115.Google Scholar
[10]Girela, D., ‘Integral means and BMOA norms of logarithms of univalent functions’, J. London Math. Soc. 33 (1986), 117132.CrossRefGoogle Scholar
[11]Hallenbeck, D. and MacGregor, T., Linear problems and convexity techniques in geometric function theory (Pitman, London, 1984).Google Scholar
[12]Hille, E., Ordinary differential equations in the complex domain (Wiley, New York, 1976).Google Scholar
[13]Koepf, W., ‘On the Fekete-Szego problem for close-to-convex functions’, Proc. Amer. Math. Soc. 101 (1987), 8995.Google Scholar
[14]MacGregor, T., ‘Applications of extreme point theory to univalent functions’, Michigan Math. J. 19 (1972), 361376.CrossRefGoogle Scholar
[15]Pearce, K., ‘New support points of S and extreme points of KS’, Proc. Amer. Math. Soc. 81 (1981), 425428.Google Scholar
[16]Pinchuk, B., ‘On starlike and convex functions of order α’, Duke Math. J. 35 (1968), 721734.Google Scholar
[17]Robinson, R., ‘On the theory of univalent functions’, Ann. of Math. 37 (1936), 135.Google Scholar