We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
For a wide class of sine trigonometric series we obtain an estimate for the integral modulus of continuity.
[1]Aljančić, S., ‘Sur le module des séries de Fourier particuliéres et sur le module des séries de Fourier transformees par des types divers’, Bull. Acad. Serbe Sci. Arts30 (6) (1967), 13–38.Google Scholar
[2]
[2]Izumi, M., and Izumi, S., ‘Modulus of continuity of functions defined by trigonometric series’, J. Math. Anal. Appl.24 (1968), 564–581.CrossRefGoogle Scholar
[3]
[3]Ram, B., ‘On the integral modulus of continuity of Fourier series’, J. Analyse Math.28 (1975), 78–85.CrossRefGoogle Scholar
[4]
[4]Ram, B., ‘Convergence of certain cosine sums in the metric space L’, Proc. Amer. Math. Soc.66 (1977), 258–260.Google Scholar
[5]
[5]Teljakovsk, S. A., ‘The integral modulus of continuity of functions with quasiconvex Fourier coefficients’, Sibirsk. Mat. Ž.11 (1970), 1140–1145.Google Scholar
[6]
[6]Teljakovski, S. A., ‘A sufficient condition of Sidon for the integrability of trigonometric series’, Mat. Zametki14 (1973), 317–328.Google Scholar
[7]
[7]Timan, A. F., Theory of approximation of functions of ral variables (Hindustan Publishing Corporation, India, 1966).Google Scholar